Teacher Copy

Polar Co-ordinates

Polar coordinates are an alternative way of describing the position of a point P in two-dimensional space. You need two measurements: firstly, the distance the point is from the **pole** (usually the origin O), r, and secondly, the angle measured anticlockwise from the **initial line** (usually the positive x-axis), θ . Polar coordinates are written as (r, θ) .

Notation When working in polar coordinates the axes might also be labelled like this:

The coordinates of P can be written in either Cartesian form as (x, y) or in polar form as (r, θ) .

You can convert between Cartesian coordinates and polar coordinates using right-angled triangle trigonometry.

From the diagram above you can see that:

$$r\cos\theta = x$$
$$r\sin\theta = y$$

$$\theta = x^2 + y^2$$

$$\theta = \arctan\left(\frac{y}{x}\right)$$

Watch out Always draw a sketch diagram to check in which quadrant the point lies, and always measure the polar angle from the positive x-axis.

Example

Find polar coordinates of the points with the following Cartesian coordinates.

a (3, 4)

$$b (5, -12)$$

b
$$(5, -12)$$
 c $(-\sqrt{3}, -1)$

Convert the following polar coordinates into Cartesian form. The angles are measured in radians.

a
$$\left(10, \frac{4\pi}{3}\right)$$
 b $\left(8, \frac{2\pi}{3}\right)$

(a)
$$x = r\cos\theta$$
 $so(-5-5\sqrt{37})$ $(b') x = r\cos\theta$ $so(-4, 4\sqrt{37})$ $= 8\cos(7\sqrt{3})$ $so(-4, 4\sqrt{37})$ $= -4$ $y = r\sin(2\sqrt{3})$ $= -4$ $y = r\sin(2\sqrt{3})$ $= 4\sqrt{3}$ $= -5\sqrt{37}$

Polar equations of curves are usually given in the form $r = f(\theta)$. For example,

$$r = 2\cos\theta$$

$$r = 1 + 2\theta$$

r=3 In this example r is constant.

You can convert between polar equations of curves and their Cartesian forms.

Find Cartesian equations of the following curves.

$$a r = 5$$

b
$$r = 2 + \cos 2\theta$$

$$\mathbf{c} \quad r^2 = \sin 2\theta, \quad 0 < \theta \le \frac{\pi}{2}$$

(a) r = 5 (b) $r = 2 + \cos 20$ Square both $r = 1 + (1 + \cos 20)$ $r = 1 + 2\cos^2 0$ $r = 1 + 2\cos^2 0$

(c)
$$\Gamma^2 = SINLO$$

$$\Gamma^2 = 7SINLOODY$$

$$\Gamma^4 = 7rSINLOODY$$

$$(5r^4y^2)^2 = 2xy$$

Fremenher 1=x2+42

R=rcob, y=rsint

Example

Find polar equations for the following:

$$a y^2 = 4x$$

b
$$x^2 - y^2 = 5$$

c
$$y\sqrt{3} = x + 4$$

(a)
$$y^2 = 47$$

so $r^2 \sin^2 y = 4r \cos \theta$
 $r = \frac{4 \cot \theta}{\sin^2 \theta}$
 $r = 4 \cot \theta \cot \theta$
(b) $x^2 - y^2 = 5$
 $r^2 \cos^2 \theta - r^2 \sin^2 \theta = 5$
 $r^2 (\cos^2 \theta - \sin^2 \theta) = 5$
 $r^2 \cos^2 \theta = 5$
 $so r^2 = 5 \sec 2\theta$

(c)
$$y\sqrt{37} = x + 4$$

 $r\sin\theta \times \sqrt{37} = r\cos\theta + 4$
 $r(\sqrt{37}\sin\theta - \cos\theta) = 4 - 0$
let $\sqrt{37}\sin\theta - \cos\theta = R\sin(\theta - x)$
 $R\cos\alpha = \sqrt{37}$, $R\sin\alpha = 1$
 $\tan\alpha = \sqrt{37} = \alpha = T_6$
 $R = \sqrt{(\sqrt{37})^2 + (1)^2} = 7$
1) becomes $2r\sin(\theta - T_6) = 4$
 $r = 2\cos(\theta - T_6)$

* Polar co-ordinate Question EXSA Q1-4

Sketching Curves

You can sketch curves given in polar form by learning the shapes of some standard curves.

- r = a is a circle with centre O and radius a.
- $\theta = \alpha$ is a half-line through O and making an angle α with the initial line.
- $r = a\theta$ is a spiral starting at O.

Example

Sketch the following curves.

$$a r = 5$$

$$\mathbf{b} \ \theta = \frac{3\pi}{4}$$

$$\mathbf{c} r = a\theta$$

Sketch the following curves.

$$\mathbf{a} \ r = a(1 + \cos \theta)$$

b
$$r = a \sin 3\theta$$

$$e^{-r^2} = a^2 \cos 2\theta$$

a

* the curve is heart's hoped and is known as a cardioid.

(b) r=asin30 Since we only draw when 120 you need to determine the values of B required because sint is positive for 0 ≤ 0 ≤ T 2T < U ≤ 3T 4T < U ≤ 5T then sin30 is positive for 0=0=5 3 =0=1 4 T/3 = U = 5 T/3

> 0=0 mutual Ine

Note r=asin34 is typical of patterns in pular co-ordinates r=acont or r=asinno will have a loops symmetrically accorded around O.

(c) r= a2 co 20 * cost is positile for tix 0 = 1 0 0 0 0 ad again at 37254550 so cold pois live for Taststa and 37 54 5 57

Curves with equations of the form $r=a(p+q\cos\theta)$ are defined for all values of θ if $p\geqslant q$. An example of this, when p=q, was the cardioid seen in Example 6a. These curves fall into two types, those that are 'egg' shaped (i.e. a convex curve) and those with a 'dimple' (i.e. the curve is concave at $\theta=\pi$). The conditions for each type are given below:

these conditions by considering the number of tangents to the curve that are perpendicular to the initial line.

→ Example 14

Example

Sketch the following curves.

$$\mathbf{a} \quad r = a(5 + 2\cos\theta)$$

$$\mathbf{b} \ \ r = a(3 + 2\cos\theta)$$

You may also need to find a polar curve to represent a locus of points on an Argand diagram.

the initial line is taken as the origin, and the initial line is taken as the positive real axis, then the point (r, θ) will represent the complex number $re^{i\theta}$ \leftarrow Section 1.1

Example

- a Show on an Argand diagram the locus of points given by the values of z satisfying |z-3-4i|=5
- **b** Show that this locus of points can be represented by the polar curve $r = 6\cos\theta + 8\sin\theta$.

Area Enclosed By A Curve

You can find areas enclosed by a polar curve using integration.

• The area of a sector bounded by a polar curve and the half-lines $\theta = \alpha$ and $\theta = \beta$, where θ is in radians, is given by the formula

Area =
$$\frac{1}{2} \int_{0}^{\beta} r^2 d\theta$$

Find the area enclosed by the cardioid with equation $r = a(1 + \cos \theta)$.

Example

Find the area of one loop of the curve with polar equation $r = a \sin 4\theta$.

F=asin 40 will have 4 loops | Area=
$$\frac{1}{2}$$
 $\int_{-\infty}^{\infty} \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{4} \int_{$

Watch out $r = \sin n\theta$ has n loops and so a simple way of finding the area of one loop would appear to be to find $\frac{1}{2} \int_0^{2\pi} r^2 d\theta$ and divide by n. This would give $\frac{d^2\pi}{8}$

The reason why this is not the correct answer is because when you take r^2 in the integral you are also including the n loops given by r < 0. You need to choose your limits carefully so that $r \ge 0$ for all values within the range of the integral.

- a On the same diagram, sketch the curves with equations $r = 2 + \cos \theta$ and $r = 5 \cos \theta$.
- b Find the polar coordinates of the points of intersection of these two curves.
- e Find the exact area of the region which lies within both curves.

e Find the exact area of the region which lies wit	min bom curves.	
(a) $r=2+cob$		
# 10/Tr/TT /3Tr 13/2/12	2	
r 3 2 1 2		
r= Scot	$\theta = 0$	ly.
1 5 0 -5 0 50 50 0 0 0 0 0 0 0 0 0 0 0 0	initial li	W.
[5 0] 0 m 1 m		
don't		
negative betreen Tal 3Ta	(c.) continuel	
(b) put 2+ cost = 5 cost	Aceu = 5 = 2 + 4 cost + costo do	
$4\omega t = 2$		
$\cos \theta = 1$	+ 5 th 25 (1+ coly) dy	
$\theta = \pm \sqrt{3}$	_	
polar co-ordinates are (= + =)	=[20+45in0+4 sin26]	
r=2+co(Ta)	+ 25 (+ + 2 sin 24) 1/2	
	TO TESINITE STA	
(c) r=2+40b r=Scot	= [37 + 747, 477 257=	
(AB) 5=C	= [3] + 237+3] #2[2 +0]-[3 +3]	77
area	= 4311 - 137	IJ
area A		
Acea=2x 2) (2+cot) do+2x2 (5cot)	$\partial d\theta$	
Area= $2\times\frac{1}{2}$ $\int_{0}^{T_{3}} (2+\cos t)^{2} dt + 2\times\frac{1}{2}\int_{0}^{T_{2}} (5\cos t)^{2} dt$ = $\int_{0}^{T_{3}} 4+4\cos t + \cos t dt + \int_{0}^{T_{2}} 25\cos^{2}t dt$		
The content of the		

¥ 65C

Tangents To Polar Curves

If you are given a curve $r=f(\theta)$ in polar form, you can write it as a parametric curve in Cartesian form, using θ as the parameter:

$$x = r\cos\theta = f(\theta)\cos\theta$$
$$y = r\sin\theta = f(\theta)\sin\theta$$

By differentiating parametrically, you can find the gradient of the curve at any point:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$
When $\frac{dy}{d\theta} = 0$, a tangent to the curve will be horizontal.

When $\frac{dx}{d\theta} = 0$, a tangent to the curve will be vertical.

You need to be able to find tangents to a polar curve that are **parallel** or **perpendicular** to the initial line.

- To find a tangent parallel to the initial line set $\frac{dy}{d\theta} = 0$.
- To find a tangent perpendicular to the initial line set $\frac{dx}{d\theta} = 0$.

Example

Find the coordinates of the points on $r = a(1 + \cos \theta)$ where the tangents are parallel to the initial line $\theta = 0$.

$$y = r sin \theta = a (1 + a sin \theta c sin \theta)$$

$$= a (sin \theta + sin \theta c sin \theta)$$

$$d\theta = a (a c sin \theta + a c sin \theta)$$

$$p nt dy = 0 : 0 = a c sin \theta + a c n' \theta - sin' \theta$$

$$0 = a c sin \theta + a c n' \theta - sin' \theta$$

$$0 = a c sin \theta + a c n' \theta - sin' \theta$$

$$0 = a c sin \theta + a c n' \theta - sin' \theta$$

$$0 = a c sin \theta + a c n' \theta - sin' \theta$$

$$0 = a c sin \theta + a c n' \theta - sin' \theta$$

$$0 = a c sin \theta + a c n' \theta - sin' \theta$$

$$0 = a c sin \theta + a c n' \theta - sin' \theta$$

$$0 = a (a c sin \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c sin \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c sin \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c sin \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c sin \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c sin \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c sin \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c sin \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c sin \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c sin \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c sin \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c sin \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c c n' \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c c n' \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c c n' \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c c n' \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c c n' \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c c n' \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c c n' \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c c n' \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c c n' \theta + a c n' \theta - sin' \theta)$$

$$0 = a (a c c n' \theta + a c n' \theta - a c n' \theta -$$

Find the equations and the points of contact of the tangents to the curve $r = a \sin 2\theta$, $0 \le \theta \le \frac{\pi}{2}$ that are:

a parallel to the initial line

b perpendicular to the initial line.

Give answers to three significant figures where appropriate.

so pts are (QU) and if tab= 1/27

so sint = 1/31 (a) y= rsint = asinH(sin2H) Aborthe. and cost = 127 dy = a(cost sintly + 7 sint cost)
= a(cost sint cust + 2 sint cost - 2 sin 34) so who 8 = 0.953 r=ax2x sint ast = Zasint (cont + any - sin24) = 20 X 2/27 X/37 r= 2av2 3 ie. (2av2 0.955) put dy =0 sint=0 or 2cort = sint The equation of the inthat live is \$1=0 and that taxet is through (20). pick values in range of question The equation of the target (b) x=raby=a cood shill through (2012 0.955) put dx=0 dx= -asindshill + Paastaste is y= Pauz XSING 0 = a (2sin 4 cost + 2 cost - Lest sin 4) 4 = 2012 X 12 = 40 $0 = 2a\cos\theta(-s/r^2t) + \cos^2\theta - s/r^2t)$ $\cos\theta = 0$ $\cos\theta = \frac{1}{2}$ $\cos\theta$ 0 = 2acob(-sin24 + co24 - sin24) So r= Zasinfut = Zax 1/3 x 1/3 = Zavit Ergent is at (2017 0.615) $\chi = 2a\sqrt{3} \times \cos\theta = 7a\sqrt{3} \times \sqrt{3} = \frac{4a}{3\sqrt{3}}$ and equation of target is $r = \frac{x}{ant}$

* ESD *Mixed Exercise 5

Summary of key points

- 1 For a point P with polar coordinates (r, θ) and Cartesian coordinates (x, y),
 - $r\cos\theta = x$ and $r\sin\theta = y$
 - $s^2 = x^2 + y^2$, $\theta = \arctan\left(\frac{y}{x}\right)$

Care must be taken to ensure that θ is in the correct quadrant.

- **2** r = a is a circle with centre O and radius a.
 - $\theta = \alpha$ is a half-line through O and making an angle α with the initial line.
 - $r = a\theta$ is a spiral starting at O.
- 3 The area of a sector bounded by a polar curve and the half-lines $\theta = \alpha$ and $\theta = \beta$, where θ is in radians, is given by the formula

Area =
$$\frac{1}{2} \int_{\Omega}^{\beta} r^2 d\theta$$

- 4 To find a tangent parallel to the initial line set $\frac{dy}{d\theta} = 0$.
 - To find a tangent perpendicular to the initial line set $\frac{dx}{d\theta} = 0$.