(acle (0/%

Polar Co-ordinates

Polar coordinates are an alternative way of describing the position of a point P in two-dimensional
space. You need two measurements: firstly, the distance the point is from the pole (usually the origin 0),
r, and secondly, the angle measured anticlockwise from the initial line (usually the positive x-axis), .
Polar coordinates are written as (, 6). (S ‘

Lot 3“““ When working in polar coordinates
74 the axes might aiso be labelled like this:
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The coordinates of P can be written in either Cartesian form as (x, y) or in polar form as (. 6).

You can convert between Cartesian coordinates and polar coordinates using right-angled triangle
trigonometry.

From the diagram above you can see that:

® peosf=x .
g = : o Always draw a sketch diagram
! =y to check in which quadrant the point lies, and
w p2=x?4p? always measure the polar angle from the positive
x-axis.

0 = arctan ({f)

Example

Find polar coordinates of the points with the following Cartesian coordinates.
a (3,4) b (5, ~12) c (-V/3,-1)
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Example

Convert the following polar coordinates into Cartesian form. The angles are measured in radians.
4m 2
o [10.5] b {851
@ 2= reosd So (vf ,5%7) ) 2=rcoy 5o (54 4&7)
= 0 % - =8 %) 3
= V:rjf“(,Z”/?}
7: r5l/\-y
= (U5 (f,ﬁ/; - 4‘(}:37
= = 5\67 ,
Polar equations of curves are usually given in the form r = f(6). For example,
r=2c0s#
r=1+20
r=3 o In this example r is constant.

You can convert between polar equations of curves and their Cartesian forms.
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Find polar equations for the following:
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@ - :
|y =ex ¢ y3T-z 44
o s =kreplt/
”’“4? 7 rsindx V3l =ral +4
= 5"7&[ ‘ ; .
X (Fsid - )= % -0

v bt coecl) o | bt Tl )= Lo (B
| . Rar =5 Ryjny = |
(b} x “/Q:S 'éko(z’{‘?f,'-olzr/é

"2@7’{(52 Ut =5 R~ \/(@)5,(()17:2
rl(a»'lé")/ﬁ"&/ =5 () becores ?r‘s/,\/}ﬂsgj,: e
rwll <5 so r=2wep-Y) -

S0 1 = 556( ¢ J

‘}%’/ﬁa/ c,’o»a/a/w’(é &Wﬂ[c‘m
A Gt




Sketching Curves

You can sketch curves given in polar form by learning the shapes of some standard curves.
s v =qis a circle with centre O and radius «.

® 6 = is a half-tine through O and making an angle a with the initial line.

® = g0 is a spiral starting at O.

Example
Sketch the following curves.
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Example
Sketch the following curves.

a r=a(l +cosh) b r=asin38 ¢ rt=a’cosf
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Curves with equations of the form r = a(p + gcos ) are defined for all values of 0 if p = ¢. An example
of this, when p = ¢, was the cardioid seen in Example 6a. These curves fall into two types, those that
are 'egg’ shaped (i.e. & convex curve) and those with a dimple’ (i.e. the curve is concave at § = 7).

The conditions for each type are given below:

— > @D 0. o prove
\ { these conditions by
considering the number

/ of tangents to the curve
that are perpendicular to
the initial line.
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'egg’ shape when p = 2¢ dimple’ shape when ¢ < p < 2¢

Example

Sketch the following curves.
a r=a(S + 2cosH) b r=a(3 + 2c0s6)
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m if the pole is taken as the origin, and

Youn lso need to fin olar curve to BRI P :
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diagram. number re” « Section 1.1
Example
a Show on an Argand diagram the locus of points given by the values of = satisfying
|z-3-4i|=3

b Show that this locus of points can be represented by the polar curve r = 6¢os6 + 8siné.

[(1) /?—(}%4//:7/ | /é/ C’af{églm form i
cicle cotee (3% (13454 07
: (el -3) e (psind &) =75

radins= 3,

N el bean) 145500 b -Frsid +b=25
SN i e ¥ - $rsind < 0

| (34 \)‘ = brad wesiy

| N ¥ &
Area Enclosed By A Curve E & /_4

You can find areas enclosed by a polar curve using
integration,
» The area of a sector bounded by a polar curve

and the half-lines § = o and 8 = 3, where 0 is
in radians, is given by the formula

Area =1 [r2do
m X
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Example

Find the area enclosed by the cardioid with equation r = a(l + cosé).
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Find the area of one loop of the curve with polar equation r = asin4f.
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The reason why this is not the correct answer is because when you take ¢ in the intagrat you are also
including the n loops given by » << 0. You need to choose your limits carefully so that » = O for all values

within the range of the integral.



Example

a On the same diagram, sketch the curves with equations r = 2 + cosf and r = Scosf.
b Find the polar coordinates of the points of intersection of these two curves.

¢ Find the exact area of the region which lies within both curves.
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Tangents To Polar Curves

If you are given a curve v = f(6) in polar form, you can write it as @ parametric curve in Cartesian form,
using 6 as the parameter:

x =rcosf =f(f) cosf

p=rsinf =f(@)sind

By differentiating parametrically, you can find the gradient of the curve at any point:

dy
dy — —— When 35 =0, a tangent to the curve will be horizontal,
&y _dd |
dx  dx :
ag —— - e e YifhO0) gﬁ =0, a tangent to the curve will be vertical,

You need to be able to find tangents to a polar curve that are parallel or perpendicular to the initial
line.

dy
= To find a tangent parallel to the initial line set a—'{% =0,

= To find a tangent perpendicular to the initial line set g% =0,

Example

Find the coordinates of the points on r = ¢(1 + cosd) where the tangents are parallel to the initial
line 6 =0.
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Example

, . . , T
Find the equations and the points of contact of the tangents to the curve r = asin 200s6= 12~
that are:

a parallel to the initial line b perpendicular to the initial line.

Give answers to three significant figures where appropriate.
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Summary of key points |
1 Forapoint Pwith polar coordinates {r, #) and Cartesian coordinates {x, 9,
* reost=xand rsing =y
5 7 { ¥
* 2=x2+ 32 §=arctan ( 5
LX
Care must be taken to ensure that @ is in the correct quadrant,
2 = y=gisacircie with centre O and radius a.
* f=aqisa half-line through O and making an angle a with the initial line.

* r=aflis a spiral starting at ©,

3 The area of a sector bounded by a polar curve and the half-lines # = o and @ = A, where # isin
redians, is given by the formula
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& + Tofind a tangent paralle! to the initial line set —=0.

> Tofind a tangent perpendicular to the initial line set

GA = {J,



