A21 Further Maths Differential Equations

Finding the general equation of a first order differential equation in
which the variables are separable.
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Example
Giventhaty = 2atx = 0 and % = y% + 4, find y in terms of x.
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First Order Linear Differential Equaations

A 1t order linear differential equation is of the form

d :
é + Py = Q where P and Q are functions of x or constants.

An equation of this form is said to be exact when one side is the exact
derivative of a product and the other side can be integrated wrt x.

If it is not exact then it can be made exact by multiplying through the
equation by a function of x. This function is called the integrating
factor.

Example
Consider the differential equation
dy 'y
— 4+ = 2
dx x *
Multiplying through by x gives...
dy
— 4y =x3
X T y=Xx
...making it exact.
cd(xy)
s =X
dx
R = fx3dx
. J— x4 _I_
SXY = 2 C

In this case the integrating factor is x.

Note:- The integrating factor is given by f(x) where f(x) = el Pdx
i.e.in the last example P = i

f f) = elx

f(X) — elnx
S f() =x



So the linear equation % + Py = Q can be solved by multiplying by the

edex edex

integgrating factor , provided can be found and the

function Qefpdx can be integrated wrt x.

Example
Find the general solution of the differential equation
dy . . 3
cosx——+ ysinx = sinx cos” x
dx
Solution
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Example
Find y in terms of x given that

Yz, >0andy=2atx =1
I 7Y =7 nx forx andy =2atx =

Solution
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The Second Order Linear Differential Equation

d’y = dy
a-—+ b + cy = 0 where a, b and c are constants
dx dx
The equation is called the 2" order, because its highest derivative of y
2
wrt X is d—y.
dx?

The equation is called linear because only 1t degree terms in y and its
derivatives occur.

Result: The general solution of the 2" order differential equation

2
d—y+b%+cy=0isy=Au+Bv,

a
dx?

where y = u and y = v are particular, distinct solutions of the
differential equation.

We now need to find the functions u and v in specific cases.

: : : d? d :
In the differential equation ad—szl + b ﬁ + cy = 0, try as a solution...

y = e™* where m is a constant to be found.

% = me™*
2
% = miemx

If y = e™* is a solution of the differential equation then
am?e™ + b me™* + ce™ =0
~am?+bm+c =0 (because e™ > 0 for all m)

The 2 values of m required are the roots of the quadratic equation
am?® + b m + ¢ = 0. This equation is called the Auxiliary Quadratic
Equation and it may have..

(i) Realroots (if b? — 4ac > 0)

(i)  Identical roots (if b?> — 4ac = 0)

(i)  Complex roots (if b? — 4ac < 0)




Example

Find the general solution of the differential equation

d*y dy
dx2+dx_6y_0
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Generalising:- The general solution of the differential equation

d? d - : :
ad—x)z} +b d—i’ + ¢y = 0, whose auxiliary quadratic equation

am? + b m + ¢ = 0 has real distinct roots a and S is:-
y = Ae®* + Be P*

(where A and B are constants)
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Auxiliary Quadratic Equation With Real Coincident Roots

Example

Find the general solution of the differential equation

d’y  dy
E-‘l-a-l-‘l-y—()

Solution
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Generalising:- The general solution of the differential equation
2
a% +b 3—2: + ¢y = 0, whose auxiliary quadratic equation
am?® + b m + ¢ = 0 has equal roots « is:-
y = (A + Bx)e**

(where A and B are constants)
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Auxiliary Quadratic Equation With Pure Imaginary Roots
Example

Find the general solution of the differential equation

dzy
dxz +4y =0
Solution
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Result:- For the differential equation

d?y
dx2+n y=0

General solution is y = A cosnx + B sinnx (where A and B are
constants).




Auxiliary Quadratic Equation With Complex Conjugate Roots

Example
Find the general solution of the differential equation
d’y  dy
——4—+13y =0
dx? dx Y
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Result:- For the differential equation
d? d - : :
ad—x); + b d—z + ¢y = 0, where the auxiliary quadratic equation

am? + b m + ¢ = 0 has complex conjugate roots
p+igandp —iq (Wherepand q € R)

the general solution is y = ef*(A4 cos gx + B sin gx)
(where A and B are constants)
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The Second Order Differential Equation

dzy dy
dxz + bd_ +cy = f(x)
To solve this type of differential equation:-
Method:-
1. Solve the differential equation
dzy dy
w +b a +cy=0

The solution is called the complementary function.
2. Find a solution of the equation

2
Zx}; + b? +cy = f(x)
where f(x)could be any one of these forms: —
(i) A constant k
(ii) A linear function px + q
(iii)  An exponential function ke?*

(iv) A trig function e.g. p sin x, g cos 2x or psin 3x + qcos3x

A solution of the differential equation for any of the forms of f(x)
given above can be found by inspection.

This solution, when found, is called a particular integral of the
equation.

3. The general solution of the diifferential equation is then
y=C.F.+P.I.



Examples on finding the P.I.

Example
dy . dy
Ix? + 3d— + 2y = f(x)

Find P.I. of this differential equation in the cases where f(x) = -+

(a.) 12 (b.)3x+5 (c.)3e?* (d.) cos 2x
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Example

Find y in terms of x for the differential equation

d?y dy
Tx2 + 3dx+ 2y = COS 2x

given that %=Oatx=0andy=0atx=0.

Solution
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