Exercise 2C

In questions 1-15, find, in ascending powers of x, the expansions up to and including the term in x^3 , simplifying the coefficients. State the set of values of x for which the expansion is valid.

1
$$(1+x)^{-2}$$

$$(1-x)^{-3}$$

3
$$(1-x)^{-5}$$

4
$$(1+x)^{-\frac{1}{2}}$$

5
$$(1+x)^{\frac{3}{2}}$$

3
$$(1-x)^{-5}$$

6 $(1-x)^{\frac{3}{4}}$

7
$$(1-3x)^{\frac{1}{3}}$$

8
$$(1+3x)^{-\frac{1}{3}}$$

11 $(3+x)^{-1}$

9
$$(1-\frac{1}{2}x)^{-2}$$

10
$$(1+6x)^{-1}$$

11
$$(3+x)^{-1}$$

12
$$(2-x)^{-2}$$

13
$$(4+3x)^{\frac{1}{2}}$$

14
$$(8-5x)^{\frac{1}{3}}$$

15
$$(100+x)^{-\frac{1}{2}}$$

By using partial fractions find, in ascending powers of x, up to and including the term in x^3 , expansions for the functions of x given in questions 16–20. State the set of values of x for which the expansion is valid.

16
$$\frac{2-3x}{1-3x+2x^2}$$

17
$$\frac{3}{1+x-2x^2}$$

18
$$\frac{2}{x^2+2x-8}$$

19
$$\frac{1}{x^2 + 3x + 2}$$

20
$$\frac{8-x}{x^2-x-6}$$

- Given that $|x| < \frac{1}{2}$, expand $(1+x)^2(1-2x)^{-\frac{1}{2}}$ in ascending powers of x up to and including the term in x^3 , simplifying each coefficient.
- Given that |x| > 2 find the first four terms in the series expansion of $\left(1-\frac{2}{x}\right)^{\frac{1}{2}}$ in descending powers of x.

By taking x = 200 use your series to find a value of $\sqrt{99}$, giving your answer to 7 decimal places. Use your series to find $\sqrt{101}$ to the same degree of accuracy.

- 23 The series expansion of $(1 + px)^q$ in ascending powers of x has coefficients of -10 and 75 in the x and x^2 terms respectively.
 - (a) Find the value of p and of q.
 - (b) Find the coefficients of the x^3 and x^4 terms in the expansion.
 - (c) State the set of values of x for which the series is valid.
- 24 Given that |x| < 1, expand $\left(\frac{1+x}{1-x}\right)^{\frac{1}{3}}$ in ascending powers of x up to and including the term in x^2 .
- 25 The coefficients of x and x^2 in the expansion of $(1 + px + qx^2)^{-2}$ in ascending powers of x are 4 and 14 respectively. Find the value of p and of q.
- 26 The coefficients of the x and x^2 terms in the expansion of $(1+px)^q$ in ascending powers of x are -6 and 6 respectively.
 - (a) Find the value of p and of q.
 - (b) Find the x^3 term and the x^4 term in the expansion.
 - (c) State the set of values of x for which the expansion is valid.

Exercise 2D

Using Maclaurin's expansion, and differentiation, show that:

1
$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + (-1)^r \frac{x^r}{r!} + \dots$$

2
$$(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots$$

3
$$e^{2x} = 1 + 2x + 2x^2 + \frac{4}{3}x^3 + \dots + \frac{2^r x^r}{r!} + \dots$$

4
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots$$

5
$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^r}{r} - \dots$$

Find the first three non-zero terms in the Maclaurin expansion of the function given in ascending powers of x:

6
$$\tan x$$

$$7 \sin^2 x$$

$$8 \ln\left(\frac{1+x}{1-x}\right), |x| < 1$$

9
$$(1-2x^2)^{\frac{1}{2}}$$

10
$$e^x \cos x$$

Exercise 2E

1 Given that x is small, find the constants A and B such that

$$(x + \sin x)\cos x \approx Ax + Bx^3$$

2 Given that x is small, find the constants C and D such that

$$\tan x \approx Cx + Dx^3$$

- 3 Find $\lim_{x\to 0} \left(\frac{\sin(\frac{\pi}{6}+x)-\sin\frac{\pi}{6}}{\sin 2x} \right)$.
- 4 Given that x is small, show that

$$\frac{\sin x - x \cos x}{x^3} \approx \frac{1}{3}$$

5 Given that x is so small that terms in x^3 and higher powers of x may be disregarded, show that

$$\ln\left[\frac{(1+2x)^2}{1-3x}\right] = 7x + \frac{1}{2}x^2$$

6 Show that for small *x*:

$$\frac{(1+x)^{\frac{1}{2}}}{(1-x)^2} \approx 1 + \frac{5}{2}x + \frac{31}{8}x^2$$

7 Given that x takes a value near $\frac{\pi}{2}$, explain why $\cos x \approx \frac{\pi}{2} - x$. Use this approximation to find (to 2 decimal places) the smallest positive root of the equation

$$\cos x = \frac{x}{10}$$

8 Given that x is small, show that

$$e^{\sin x} = 1 + x + \frac{1}{2}x^2 + Ax^3$$

and determine the value of A. You may assume that terms in x^4 and higher powers of x can be disregarded.

- 9 Evaluate: (a) $\lim_{x\to 0} \left(\frac{\sin x x}{\sin x x \cos x} \right)$ (b) $\lim_{x\to 0} \left(\frac{\ln(1+x) x}{\sin^2 x} \right)$.
- 10 Given that x is small and that terms in x^4 and higher powers of x may be disregarded, show that

$$\ln(\sec x + \tan x) = x + \frac{1}{6}x^3$$

ANSWERS

Exercise 2C

1
$$1-2x+3x^2-4x^3+\ldots$$
, $|x|<1$

2
$$1 + 3x + 6x^2 + 10x^3 + \dots$$
, $|x| < 1$

3
$$1 + 5x + 15x^2 + 35x^3 + \dots$$
, $|x| < 1$

4
$$1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \dots, |x| < 1$$

5
$$1 + \frac{3}{2}x + \frac{3}{8}x^2 - \frac{1}{16}x^3 \dots$$
, $|x| < 1$

6
$$1 - \frac{3}{4}x - \frac{3}{32}x^2 - \frac{5}{128}x^3 \dots$$
 $|x| < 1$

7
$$1-x-x^2-\frac{5}{3}x^3-\dots$$
 $|x|<\frac{1}{3}$

8
$$1 - x + 2x^2 - \frac{14}{3}x^3 + \dots$$
 $|x| < \frac{1}{3}$

9
$$1 + x + \frac{3}{4}x^2 + \frac{1}{2}x^3 + \dots$$
 $|x| < 2$

10
$$1-6x+36x^2-216x^3+\dots$$
 $|x|<\frac{1}{6}$

11
$$\frac{1}{3} - \frac{x}{9} + \frac{x^2}{27} - \frac{x^3}{81} + \dots$$
 $|x| < 3$

12
$$\frac{1}{4} + \frac{1}{4}x + \frac{3}{16}x^2 + \frac{1}{8}x^3 + \dots$$
 $|x| < 2$

13
$$2 + \frac{3}{4}x - \frac{9}{64}x^2 + \frac{27}{512}x^3 - \dots$$
 $|x| < \frac{4}{3}$

14
$$2 - \frac{5}{12}x - \frac{25}{288}x^2 - \frac{625}{20736}x^3 - \dots |x| < \frac{8}{5}$$

15
$$\frac{1}{10} - \frac{1}{2000}x + \frac{3}{800000}x^2 - \frac{1}{32000000}x^3 + \dots$$

16
$$2+3x+5x^2+9x^3+\dots$$
 $|x|<\frac{1}{2}$

17
$$3-3x+9x^2-15x^3+\dots$$
 $|x|<\frac{1}{2}$

18
$$-\frac{1}{4} - \frac{x}{16} - \frac{3}{64}x^2 - \frac{5}{256}x^3 - \dots |x| < 2$$

19
$$\frac{1}{2} - \frac{3}{4}x + \frac{7}{8}x^2 - \frac{15}{16}x^3 + \dots$$
 $|x| < 1$

20
$$-\frac{4}{3} + \frac{7}{18}x - \frac{31}{108}x^2 + \frac{73}{648}x^3 - \dots |x| < 2$$

21
$$1 + 3x + \frac{9}{2}x^2 + \frac{13}{2}x^3 + \dots$$

22
$$1 - x^{-1} - \frac{1}{2}x^{-2} - \frac{1}{2}x^{-3}$$
, 9.949 874 4; 10.049 875 6

23 (a)
$$p = 5$$
, $q = -2$ (b) -500 , 3125 (c) $|x| < \frac{1}{5}$

24
$$1 + \frac{2}{3}x + \frac{2}{9}x^2$$

25
$$p = -2$$
, $q = -1$

26 (a)
$$p = -4$$
, $q = \frac{3}{2}$ (b) $4x^3$, $6x^4$ (c) $|x| < \frac{1}{4}$

Exercise 2D

6
$$x + \frac{1}{3}x^3 + \frac{2}{15}x^5 \dots$$

7
$$x^2 - \frac{1}{3}x^4 + \frac{2}{45}x^6 \dots$$

8
$$2x + \frac{2}{3}x^3 + \frac{2}{5}x^5 \dots$$

9
$$1-x^2-\frac{1}{2}x^4...$$

10
$$1+x-\frac{1}{3}x^3...$$

Exercise 2E

1
$$A = 2$$
, $B = -\frac{7}{6}$ 2 $C = 1$, $D = \frac{1}{3}$

3
$$\frac{1}{4}\sqrt{3}$$
 7 1.43 8 $A = 0$

9 (a)
$$-\frac{1}{2}$$
 (b) $-\frac{1}{2}$