Hyperbolic functions, Inverse hyp fns, their definitions, derivatives and special integrals

-P3 book P76 Ex4A Q(1-3)alt,4,5,7-17odds,18,20,22,23,25

-P3 book P76 <u>Ex4A Q</u>26,27,29,31-33, 35,38,40

Exercise 4A

1 Express in terms of e:

- (a) $\sinh 2$ (b) $\cosh \frac{1}{2}$ (c) $\tanh(-3)$
- (d) $\cosh(\sqrt{2})$ (e) $\sinh \pi$ (f) $\tanh 1 \tanh(-1)$
- 2 Find, to 3 decimal places, the values of x for which:
 - (a) $\sinh x = 3$ (b) $\sinh x = -3$ (c) $\cosh x = \frac{3}{2}$
 - (d) $\cosh x = \sqrt{5}$ (e) $\tanh x = \frac{3}{4}$ (f) $\tanh x = -\frac{2}{3}$
- **3** Find the value of each of the following, giving each answer to 4 significant figures:
 - (a) $\cosh 4$ (b) $\sinh \frac{2}{3}$ (c) $\tanh (-2)$
 - (d) $\sinh(-\frac{1}{2})$ (e) $\cosh \pi$ (f) $\tanh(e^{\frac{1}{2}})$
- 4 Given that $\cosh x = \frac{5}{3}$, show that $\sinh x = \pm \frac{4}{3}$. Hence find the values of e^x and x.
- 5 Sketch, in separate diagrams, the curves with equations

(a)
$$y = \operatorname{cosech} x, x \in \mathbb{R}, x \neq 0$$

(b)
$$y = \operatorname{coth} x, x \in \mathbb{R}, x \neq 0$$

Give the equations of the asymptotes to each curve.

6 Sketch, in the same diagram, the curves with equations

 $y = \sinh 2x$ and $y = \sinh 3x$.

Find the x-coordinates of the points where the curves meet the line y = 2, giving your answer to 2 decimal places.

In questions 7–20, prove the given identity and, where appropriate, check the identity independently by using Osborn's rule when you know the comparable trigonometric identity.

7
$$\sinh A \equiv -\sinh(-A)$$

8 $\sinh 2A \equiv 2\sinh A \cosh A$
9 $\cosh 2A \equiv 2\cosh^2 A - 1$
10 $\sinh 3A \equiv 3\sinh A + 4\sinh^3 A$
11 $\cosh 3A \equiv 4\cosh^3 A - 3\cosh A$
12 $\tanh^2 A + \operatorname{sech}^2 A \equiv 1$
13 $\sinh(A - B) \equiv \sinh A \cosh B - \cosh A \sinh B$
14 $\cosh(A - B) \equiv \cosh A \cosh B - \sinh A \sinh B$
15 $\cosh A + \cosh B \equiv 2\cosh \frac{A + B}{2}\cosh \frac{A - B}{2}$
16 $\sinh A + \sinh B \equiv \cosh(A + B) - \cosh(A - B)$
17 $2\sinh A \sinh B \equiv \cosh(A + B) - \cosh(A - B)$
18 $\frac{\cosh x - 1}{\cosh x + 1} \equiv \tanh^2 \frac{x}{2}$
19 $\sinh x \equiv \frac{2\tanh x + 1}{\cosh x + \sin x - 1} \equiv \coth \frac{x}{2}$

- 21 Given that $\sinh x = \tan \theta$, $0 < \theta < \frac{\pi}{2}$, express $\cosh x$ and $\tanh x$ in terms of θ .
- 22 Given that x > 0, show that

$$\sinh(\ln x) = \frac{x^2 - 1}{2x}$$

Express $\cosh(\ln x)$ in a similar form.

23 Find the value, or values, of x for which $4 \sinh x - 3 \cosh x = 5$

giving your answer, or answers, to 3 significant figures.

- **24** Given that $\tanh t = \frac{1}{3}$, find the value of e^{2t} . Hence find the exact value of t.
- 25 Using Maclaurin's expansion for e^x and e^{-x} , express sinh x and cosh x as power series in increasing powers of x, up to and including terms in x^5 and x^6 respectively.
- **26** Given that $\sinh y = x$, show that

$$y = \ln[x + (1 + x^2)^{\frac{1}{2}}]$$

By differentiating this result, show that

$$(1+x^2)\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1$$

- 27 Solve the equation $2\cosh x + \sinh x = 2$.
- 28 Solve the equation $13\cosh\theta + 12\sinh\theta = \frac{25}{4}$.
- 29 Prove that $\cosh(x + y) \equiv \cosh x \cosh y + \sinh x \sinh y$. Given that $a \cosh t + b \sinh t = R \cosh(t + \alpha), a > b > 0$, show that

$$\alpha = \frac{1}{2} \ln \left(\frac{a+b}{a-b} \right)$$

Find R in terms of a and b.

30 Using the definitions of $\sinh x$ and $\cosh x$, in terms of e^x , show that for |x| < 1,

$$\operatorname{artanh} x = \frac{1}{2} \ln \frac{1+x}{1-x}$$

Hence expand artanh x in ascending powers of x up to and including the term in x^5 .

31 Solve for x the equation

$$3 \operatorname{sech}^2 x + 4 \tanh x + 1 = 0$$

giving the root as a natural logarithm.

32 Solve the equation

$$\cosh^2 t + \sinh^2 t = 3$$

giving the answers in terms of natural logarithms.

33 Solve the equation

 $4 \tanh t - \operatorname{sech} t = 1$

giving the answer in terms of a natural logarithm.

34 Prove that $\operatorname{arsinh} x = \ln[x + (1 + x^2)^{\frac{1}{2}}]$. Given that x is large and positive, show that:

 $\operatorname{arsinh} x \approx \ln 2 + \ln x + \frac{1}{4x^2}$

- 35 Solve the equation $\cosh 2x = 3 \sinh x$, giving your answers to 3 significant figures.
- 36 Given that $p = \frac{1}{2} \ln 2$, find the value of $\tanh p$. Find also the values of $\sinh 2p$, $\cosh 2p$ and $\tanh 2p$.

37 Prove that
$$\operatorname{coth} A + \operatorname{cosech} A \equiv \operatorname{coth} \frac{A}{2}$$
.

38 Given that $x = \sin \theta \cosh t$ and $y = \cos \theta \sinh t$, find a relation between

(a) x, y and θ (b) x, y and t.

- 39 Prove that $\lim_{x \to 0} \frac{\sinh x \sin x}{x^3} = \frac{1}{3}$
- 40 Prove that $\cosh^6 A \sinh^6 A \equiv 1 + \frac{3}{4} \sinh^2 2A$. Hence show that

$$8(\cosh^6 A - \sinh^6 A) \equiv 3\cosh 4A + 5$$

Exercise 4B

In questions 1–20, differentiate with respect to x:

1	$\cosh 2x$	2	$\sinh \frac{x}{2}$	3	$\tanh 3x$
4	$\operatorname{sech} 2x$	5	$\operatorname{cosech} \frac{x}{3}$	6	$e^x \cosh x$
	$\sinh^2 3x$ ln(sinh x)		$tanh^3 x$ x sinh 2x		$ \begin{array}{l} \coth(\ln x) \\ x^3 \cosh 3x \end{array} $
13	$\ln(\tanh x)$	14	e ^{sinh x}	15	$\frac{x}{\cosh x}$
16	$\frac{\cosh x}{x}$	17	$e^{\cosh^3 x}$	18	$\frac{\coth 2x}{x^3}$

19 $\frac{\operatorname{cosech}(x^2)}{x}$ 20 $\ln(\tanh x - \operatorname{sech} x)$

21 Given that $y = \operatorname{arsinh}(x-1)$, find the value of $\frac{dy}{dx}$ at x = 2.

- 22 Find the equation of the normal at the point where $x = \ln 2$ on the curve $y = \sinh x + 3 \cosh x$.
- 23 The curve $y = 5 \sinh x 4 \cosh x$ crosses the x-axis at the point A. Determine the coordinates of A and the equation of the tangent to the curve at A.
- 24 Find the minimum value of y, where $y = 13 \cosh x + 12 \sinh x$ and the value of x where this occurs.
- 25 The tangent at the point P with x-coordinate 2c on the curve with equation y = c cosh x/c, meets the y-axis at the point Q. Find the distance OQ in terms of c, where O is the origin.

- 26 Find to 2 decimal places the coordinates of the stationary points on the curve $y = 8 \sinh x - 27 \tanh x$ and determine the nature of these stationary points.
- 27 Given that $y = A \cosh 3x + B \sinh 3x$, where A and B are constants, show that $\frac{d^2y}{dx^2} 9y = 0$.
- 28 Use successive differentiation and Maclaurin's expansion to show that:

sinh
$$x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

- 29 Given that $y = \cosh 3x \sin x$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
- 30 Find the first two non-zero terms in the series expansion of tanh x in ascending powers of x.
- 31 Find an equation of the tangent and an equation of the normal at the point where $x = \frac{3}{2}$ on the curve with equation $y = \tanh x$.

In questions 32–47, differentiate with respect to x:

32 arsinh x33 arcosh $\frac{x}{2}$ 34 artanh x^2 35 arsech x36 arcosech x37 arcoth 2x

- 38 arsech $x^{\frac{1}{2}}$ 39 $x \operatorname{arcosh} x$ 40 $\frac{x}{\operatorname{arsinh} x}$ 41 $(\operatorname{artanh} x)^2$ 42 $(\operatorname{arsech} x)^{\frac{1}{2}}$ 43 $e^{x^2} \operatorname{arsinh} x$ 44 $\frac{\ln x}{\operatorname{arcosh} x}$ 45 $\operatorname{artanh}(\sin x)$ 46 $\operatorname{artanh}(\sinh x)$
- 47 $\frac{\arcsin x}{\operatorname{arsinh} x}$
- 48 Find an equation of the tangent to the curve $y = \operatorname{arsinh} x$ at
 - (i) the origin and
 - (ii) the point where x = 1.
- **49** Given that $y = (\operatorname{arsinh} x)^2$, show that:

$$(1+x^2)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + x\frac{\mathrm{d}y}{\mathrm{d}x} = 2$$

- 50 Find an equation of the normal at the point where $x = \frac{3}{4}$ on the curve with equation $y = \operatorname{artanh} x$.
- 51 Given that $y = \operatorname{arsinh} x$, show that

(a)
$$y = \ln[x + \sqrt{(1 + x^2)}]$$

(b) $(1 + x^2) \left(\frac{dy}{dx}\right)^2 = 1$
(c) $(1 + x^2) \frac{d^3y}{dx^3} + 3x \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$

- 52 Show that the curve with equation $y = 3 \cosh x x \sinh x$ has a minimum point A on the y-axis. Find the coordinates of A. Show further that the curve has another stationary value between x = 1.9 and x = 2. Sketch the curve.
- 53 Show that $y = e^{\operatorname{arsinh} x}$ satisfies the relation

$$(1+x^{2})\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - y = 0$$

- 54 Given that $y = \sinh x + k \cosh x$, show that the least value of y is $\sqrt{k^2 - 1}$ and that this occurs at $x = \frac{1}{2} \ln \left(\frac{k - 1}{k + 1} \right)$ where k is a constant and |k| > 1.
- 55 Show that $(\cosh x + \sinh x)^k + (\cosh x \sinh x)^k \equiv 2 \cosh kx$, where k is real. Hence solve the equation

$$\left(\cosh x + \sinh x\right)^5 + \left(\cosh x - \sinh x\right)^5 = 5$$

giving your answers to 2 decimal places.

- 56 Find the coordinates of the minimum point on the curve $y = 5 \cosh x 3 \sinh x$.
- 57 Given that $y = \arctan(e^x)$, show that $\frac{dy}{dx} = \frac{1}{2} \operatorname{sech} x$, and find $\frac{d^2y}{dx^2}$.

58 Given that $\operatorname{artanh} x + \operatorname{artanh} y = \frac{1}{2} \ln 5$, show that $y = \frac{2-3x}{3-2x}$.

- 59 Given that $y = \ln \left[\tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right]$, show that $\sinh y = \tan x$ and $\cosh y = \sec x$.
- 60 For the curve $y = \operatorname{arsinh}(x+1)$, find
 - (a) the coordinates of its point of inflexion P
 - (b) the equation of the normal to the curve at P.

ANSWERS

Exercise 4A $\begin{array}{rcl}
\mathbf{1} & (a) & \frac{1}{2}(e^2 - e^{-2}) & (b) & \frac{1}{2}(e^{\frac{1}{2}} + e^{-\frac{1}{2}}) \\
(c) & -\frac{e^3 - e^{-3}}{e^3 + e^{-3}} & (d) & \frac{1}{2}(e^{\sqrt{2}} + e^{-\sqrt{2}}) \\
(e) & \frac{1}{2}(e^{\pi} - e^{-\pi}) & (f) & 2\left(\frac{e - e^{-1}}{e + e^{-1}}\right)
\end{array}$ **2** (a) 1.818 (b) -1.818 (c) ± 0.962 (d) ± 1.444 (e) 0.973 (f) -0.805 **3** (a) 27.31 (b) 0.7172 (c) -0.9640 (d) -0.5211(e) 11.59 (f) 0.9287 4 $e^x = 3$ or $\frac{1}{3}$, $x = \pm \ln 3$ 5 (a) x = 0, y = 0 (b) $y = \pm 1, x = 0$ 6 0.72, 0.48 22 $\frac{x^2+1}{2x}$ 21 $\sec\theta, \sin\theta$ 23 2.37 24 2, $\frac{1}{2}\ln 2$ 25 $\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$ $\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$ **27** 0, $-\ln 3$ **28** $-\ln \frac{5}{2}$, $-\ln 10$ **29** $\sqrt{a^2 - b^2}$ **30** $x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots$ 32 $\pm \frac{1}{2}\ln(3+2\sqrt{2})$ $-\frac{1}{2}\ln 5$ 33 $\ln \frac{5}{3}$ 35 0.481, 0.881 **36** $\frac{1}{3}$; $\frac{3}{4}$, $\frac{5}{4}$, $\frac{3}{5}$ **38** (a) $x^2 \operatorname{cosec}^2 \theta - y^2 \sec^2 \theta = 1$ (b) $x^2 \operatorname{sech}^2 t + y^2 \operatorname{cosech}^2 t = 1$

Exercise 4B

 $2 \frac{1}{2} \cosh \frac{x}{2}$ 1 $2 \sinh 2x$ 3 $3 \operatorname{sech}^2 3x$ 4 $-2 \operatorname{sech} 2x \tanh 2x$ 5 $-\frac{1}{3}\operatorname{cosech}\frac{x}{3}\operatorname{coth}\frac{x}{3}$ 6 $e^x(\cosh x + \sinh x)$ 7 $6 \sinh 3x \cosh 3x$ 8 $3 \tanh^2 x \operatorname{sech}^2 x$ 9 $-\frac{1}{x}\operatorname{cosech}^2(\ln x)$ 10 $\coth x$ 11 $\sinh 2x + 2x \cosh 2x$ 12 $3(x^2 \cosh 3x + x^3 \sinh 3x)$ 1 13 $\frac{1}{\sinh x \cosh x}$ 14 $(\cosh x)e^{\sinh x}$ $\frac{\cosh x - x \sinh x}{\cosh^2 x} \quad 16 \quad \frac{x \sinh x - \cosh x}{x^2}$ 15 17 $3\cosh^2 x \sinh x e^{\cosh^3 x}$ $-\frac{2x\operatorname{cosech}^2 2x + 3\operatorname{coth} 2x}{x^4}$ 18

19
$$\frac{-\cos (x^{2})(2x^{2} \coth x^{2} + 1)}{x^{2}}$$
20
$$\frac{\operatorname{sech} x(\operatorname{sech} x + \tan h x)}{\tan h x - \operatorname{sech} x}$$
21
$$\frac{1}{\sqrt{2}}$$
22
$$y - \frac{9}{2} = -\frac{2}{7}(x - \ln 2)$$
23
$$(\ln 3, 0), y = 3(x - \ln 3)$$
24
$$y = 5 \text{ at } x = -\ln 5$$
25
$$\frac{c}{2}(3e^{-2} - e^{2})$$
26
$$\max \cdot (-0.962, 11.18), \min (0.962, -11.18)$$
29
$$\frac{dy}{dx} = 3 \sinh 3x \sin x + \cosh 3x \cos x$$

$$\frac{d^{2}y}{dx^{2}} = 8 \cosh 3x \sin x + 6 \sinh 3x \cos x$$
30
$$x - \frac{x^{3}}{3} + \dots$$
31
$$y - 0.905 = 0.181(x - 1.5)$$

$$y - 0.905 = -5.534(x - 1.5)$$
32
$$\frac{1}{\sqrt{(1 + x^{2})}}$$
33
$$\frac{1}{\sqrt{(x^{2} - 4)}}$$
34
$$\frac{2x}{1 - 4x^{2}}$$
35
$$\frac{-1}{x\sqrt{(1 - x^{2})}}$$
36
$$\frac{-1}{x\sqrt{(1 + x^{2})}}$$
37
$$\frac{2}{1 - 4x^{2}}$$
38
$$\frac{-1}{2x\sqrt{(1 - x)}}$$
39
$$\operatorname{arcosh} x + \frac{x}{\sqrt{(x^{2} - 1)}}$$
40
$$\frac{\operatorname{arsinh} x - \frac{x}{\sqrt{(x^{2} - 1)}}}{(\operatorname{arsinh} x)^{2}}$$
41
$$\frac{2 \operatorname{artanh} x}{1 - x^{2}}$$
42
$$\frac{-1}{2x\sqrt{(1 - x^{2})}\sqrt{(\operatorname{arsech} x)}}$$
43
$$2x e^{x^{2}} \operatorname{arsinh} x + \frac{e^{x^{2}}}{\sqrt{(x^{2} - 1)}}$$
44
$$\frac{\frac{1}{x} \operatorname{arcosh} x - \frac{\ln x}{\sqrt{(x^{2} - 1)}}}{(\operatorname{arsinh} x)^{2}\sqrt{(1 - x^{4})}}$$
48
$$y - x = 0, y - \operatorname{arsinh} 1 = \frac{1}{\sqrt{2}}(x - 1)$$
50
$$y - \frac{1}{2} \ln 7 = -\frac{7}{16}(x - \frac{3}{4})$$
52
$$(0, 3)$$
55
$$\pm 0.31$$
56
$$(\ln 2, 4)$$
57
$$-\frac{1}{2} \operatorname{sech} x \tanh x$$
60
$$(a) (-1, 0)$$
(b) $y + x + 1 = 0$