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Complex Numbers 2

Q Exponential form of complex numbers

You can use the modulus—argument form of a m The: modliss -rgumsent form of
complex number to express it in the exponential a complex number is z = r(cos 6+ isin )
form: - = re". where r = |z| and f# = arg =,
. ) i ) ) <« Book 1, Section 2.3
You can write cos # and sin # as infinite series of powers
of #:
A (=1)" 0%
cosfi=1-"—4+———+ ..+ 2 Y 1
2! 4 6 (2r)! @
. g g @ (1) g+
sinf=0-—+———+..+—"——+... (2
ETRCTRN T @r +1)! @
You can also write e*, x £ R, as a series expansion in m These are the Maclaurin series
powers of x. expansions of sin #, cos fl and e*.
T e DR - -+ Chapter 2
e"=l+.\'+'-’2‘i+:;—!+%?+'-‘5—!+ +'~:T’+...

You can use this expansion to define the exponential
function for complex powers, by replacing x with a
complex number. In particular, if you replace x with
the imaginary number if, you get

(i?)?  (8y (ot (i) (i0)
2 Yarta e T

el = 1 + i +

O P P A P
=1+IEI'+F+?+H+T+F+

[ 1 o [
A argtEs et

g (g 2 85 )
= 1_ﬂ+ﬂ_a+"')+|Lg_ﬂ+§_'".-|

=1+ifl-

By comparing this series expansion with (1) and (2), you can write e'* as

This formula is known as Euler's relation.

elf = cosf +isiné .
It is important for you to remember this result,

. ia i .
= You can use Euler’s relation, e = cos @ + isin 8, @ Substituting 8= = into Euler’s

to write a complex number z in exponential relation yields Euler’s identity:
form: e 11=0

- — pal?

i=re This equation links the five fundamental
wherer=|zland @ =argz. constants 0, 1, m, e and i, and is considered

an example of mathematical beauty.



Express the following in the form re, where -7 < f = .

a :=v"§(cosl'l0+isinl—%) 5= (cos%-isin%}

Express z = 2 - 3i in the form re, where -7 < @ = 7.




3l

Express z = v2e 4 in the form x + iy, where x, y € R.

23ni
Express z=2e 5 in the form r(cos 6 + isin @), where -7 < 0 < 7.

Use e = cos + isin 6 to show that cosf = 5(¢" +¢™).




m Multiplying and dividing complex numbers

You can apply the modulus—argument rules for multiplying and dividing complex numbers to
numbers written in exponential form.

Recall that, for any two complex numbers z, and z,,

* |Z122] = |z]| 2|

° alg(z,zy) =arg(zqy) +arg(z,)
. 1__2 ! : @ These results can be proved by

o };l - 1zl considering the numbers z, and z, in the form
Zal |7 r(cos @ + isin 0) and using the addition formulae

o} for cos and sin. < Book 1, Section 2.3
° arg (—) =arg(zy —arg(z,)

Z2

Applying these results to numbers in exponential form gives the following result:

® If z, = r,e'% and z, = r,el?, then: m
You cannot automatically assume
* 217p = Iy el the laws of indices work the same way with
2 complex numbers as with real numbers. This
o i ,.—ze'w"e" result only shows that they can be applied in
these specific cases.

Moame T orea T
-(.('0512-.,15"]12)
o] S ... 5%\
V2{cos "~ +isin T |

J
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Express in the form re?.

@ De Moivre’s theorem

You can use Euler’s relation to find powers of complex numbers given in modulus—argument form.
(rlcos 6 + isin O)) = (rel9)?
= ’.el() X ’.ei0
e
= r(cos 20 + isin 26)
Similarly, (r(cos @ + isin 8))* = r*(cos 3@ + isin 36), and so on.
The generalisation of this result is known as de Moivre’s theorem:

® For any integer n,

(rlcos 6 + isin 0))" = r"(cos n@ + isin no)



You can prove de Moivre's theorem quickly using Euler’s relation.

WEOER IR A) = e This step is valid for any integer
=g exponent n. ¢ Exercise 1B, Challenge
= r(cos nf + isin nf)

You can also prove de Moivre's theorem for positive m THiS oroof lises themethod
integer exponents directly from the modulus- of proof by induction.
argument form of a complex number using the addition « Book 1, Chapter 8

formulae for sinand cos.

1. Basis step
n=1; LHS = (r{cos @ + isin §))! = r(cos @ + isin §)
RHS = t(cos 18 + isin 18) = r(cos f + isin f)
As LHS = RHS, de Moivre's theorem is true forn =1,
2. Assumption step
Assume that de Moivre's theorem is true forn =k, k € Z™:
(r(cas 0 + isin ) = r(cos kb + isin kb)

3. Inductive step

Whenn=/k+1,

(r(cos @ +isin§))**1 = (r(cos 6 + isin 8))* x r(cos @ + i sin 6)
= rk(cos k@ + isin kf) x r(cos 6 +isinf) ~—— By assumption step
=rk*+1(cos k@ + i sin k) (cos @ + isin 6)
= rk+1((cos k6 cos 6 - sin kf sin 6) + i(sin @ cos 6 + cos k0 sin 6))
=rk+1(cos(kd + 6) + isin(k + 6))
= rk+1(cos((k + 1)8) + isin((k + 1)8))

Therefore, de Moivre's theorem is true when n = k + 1.

By addition formulae

4. Conclusion step
If de Moivre’s theorem is true for n = k, then it has been @ The corresponding proof
shown to be true forn =k + 1. for negative integer exponents is

left as an exercise.

As de Moivre’s theorem is true forn =1, it i
+ It Is now proven to ~» Exercise 1C, Challenge

be true for all n € Z* by mathematical induction.

(cos % +isin ?—77")5
(cosﬁ— isin %—7;)1

Simplify




Use de Moivre’s theorem to show that
cos 66 = 32cosb f — 48 cos* @ + 18cos?d — 1

You can also find trigonometric identities for sin” @ and cos" @ where n is a positive integer.
If z=cos@ +isind, then

31,_.- =z1=(cos@ +isinf)?
= (cos(—8) + isin(-6)) Apply de Moivre’s theorem.
=cosf—isinf — Use cos 8 = cos (~8) and —sin 8 = sin (=0).
It follows that
z+%= cosf +isin@+cosf —isinf=2cosb
z—%=r.059+isin8— (cos @ —isinf) =2isinf

7



Also,

7' = (cos@ +isin )" = cosnb + isinnb By de Moivre's theorem.
% =z"=(cos@+isin@)™”
= (cos(—nb) + isin(-nb)) Apply de Moivre's theorem.
=cosnf —isinnd Use cos 8 = cos (=0) and sin (—6) = —=sin 6.

It follows that

z”+%=cosn9+ isinnf + cosnd — isinnd = 2 cos nf

Z'- —,1,—, = cos nf + isin nf — (cos nf — isin nd) = 2isin né

It is important that you remember and are able to apply these results:

"7+ % =2cosf 7y % = 2cos nf m In exponential form, these results are
. equivalent to:
1 g - - " l = - -
" Z-z=2lsn? - " 2SNt cosnf = %(e""’ + e~Inf) sin né =Eli(e'"" — e~inf),

e )

Express cos’ § in the form acos 56 + hcos 30 + ccos 6, where a, b and ¢ are constants,




a Express sin* @ in the form dcos46 + ecos 26 + f, where d, e and fare constants.

b Hence find the exact value of f ? sin“ 6 dé.
0




m nth roots of a complex number

You can use de Moivre’s theorem to solve an equation of the form z = w, where z, w € C.
This is equivalent to finding the nth roots of w.

Just as a real number, x, has two square roots, Vx and —vx, any complex number has z distinct nth roots.

® |f zand w are non-zero complex numbers and # is a positive integer, then the equation 7" = w
has n distinct solutions.

You can find the solutions to z” = w using @ ok ot Band
de Moivre's theorem, and by considering the fact STl O_for integer values of k

that the argument of a complex number is not unique.

® For any complex number z = r(cos 6 + isin 8), you can write z = r(cos (6 + 2k ) + isin (6 + 2k)),
where k is any integer.

a Solve the equation z3 =1,
b Represent your solutions to part a on an Argand diagram.
¢ Show that the three cube roots of 1 can be written as 1, w and w? where 1 + w + w?=0.

10




® |n general, the solutions to z” = 1 are 7 = cos (?) +isin

are known as the nth roots of unity.

=e% fork=1,2,...,nand

- (sz) 2k

If nis a positive integer, then there is an nth root of unity w = e such that:

* the nth roots of unity are 1, w, w?, -+, w"1!

o 1, w, w? -+, w" ! form the vertices of a regular n-gon

e l+w+w2+...+w"™l=0

Solve the equation z4 = 2 + 2i/3.

11




12




Solve the equation z* + 4v2 +4iv2 = 0.

@ Solving geometric problems

You can use properties of complex nth roots to solve geometric problems.

® The nth roots of any complex number a lie m LS
at the vertices of a regular n-gon with its L et
centre at the origin.

be the centre of the circle that

The orientation and size of the regular polygon will passes through all of its vertices.
depend on a.

13



For example, the sixth roots of 7 + 24i form this
regular hexagon. Each vertex of the hexagon is
equidistant from the origin, which lies at the centre
Re of the circle passing through all six vertices.

m Explore nth roots of complex

numbers in an Argand diagram using GeoGebra.

| e —

You can find the vertices of this regular polygon by finding a single vertex, and rotating that point
around the origin. This is equivalent to multiplying by the nth roots of unity.

® If z, is one root of the equation z” = 5, and 1, w, w?, ..., w1 are the nth roots of unity, then
the roots of z” = s are given by z,, z,w, z,w?, ..., 7w

The point P(vV3, 1) lies at one vertex of an equilateral triangle. The centre of the triangle is at the origin.

a Find the coordinates of the other vertices of
the triangle.

b Find the area of the triangle.

14




 Summary of key points

1 You can use Euler’s relation, e = cos 6 + isin 6, to write a complex number z in exponential

form:
7 = reif

where r=|z| and = arg z.

2 For any two complex numbers z; = r,e% and z, = r,e',

¢ 2122 == "1"2ei(ol+02)

.
r\‘;"-t-\'

r
= —l'el(ol ‘02)
rs

3 De Moivre’s theorem:

For any integer n, (r(cos @ + isin 6))" = r*(cos né + isin né)

1
4 . z+%=2c050 + 2" +— =2cosnf
Z Z
e z=L=2ising e 21— = 2isinng
z—<=2isin 2!~ =2isinn
5 Forw,zeC,
n-1
w(z" — 1)
* D WZ = WA WZHWZe .. Wl
r=0 z-1

00
c YW =W+ wz+ w2+ ... =
r=0

6 If zand w are non-zero complex numbers and n is a positive integer, then the equation z” = w

has » distinct solutions.

7 For any complex number z = r(cosé + isiné), you can write

z =r(cos (0 + 2km) +isin (6 + 2kn))
where k is any integer.

8 In general, the solutions to z” = 1 are z = cos (2—@) +isin (——

n
are known as the nth roots of unity.

ZWk) =efork=1,2,..., nand

n

If nis a positive integer, then there is an nth root of unity w = e such that:

* The nth roots of unity are 1, w, w?, ..., w"!

* 1w ? ..., w1 form the vertices of a regular n-gon

s ltw+w?+...+wl=0

9 The nth roots of any complex number s lie on the vertices of a regular n-gon with its centre at

the origin.

10 If z; is one root of the equation z" = s, and 1, w, w?, ..

roots of z” = s are given by z,, zyw, z,u?, ..., ZyW" L

15
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A21 Further Maths

Partial Fractions

*knowledge of A-level Maths A21 Partial Fractions is assumed.

The process of taking a single fraction and breaking it up into the sum (or difference) of 2 or more fractions is known
as splitting an expression into partial fractions.

Note: If the degree of the numerator is greater than or equal to the degree of the denoinator you must first divide
the numerator by the denominator.

Quadratic factors in the denominator

For a fraction that has a non-reducible quadratic factor on the denominator and where the degree of the
denominator exceeds that of the numerator e.g.

x?—5x+1
2+ 1)(x—2)

The partial fractions are of the form:-

Ax+B C
(x%2+1)  (x-2)

where A,B and C are constants.

Example

5x2+4x+4

Express ————5 <
P (x+2)(x2+4)

in partial fractions.

Solution

16



Note:- Remember to check that the denominator is completely factorised before attempting to put in partial
fractions.

Example
c —-2x—-1 ) 't
Xpress in partial fractions.
P (x2-3x+2)(x%—x+3) P
Solution
Note:- x3—-1=@x-Dx*+x+1)

x3+1=(@x+D*—x+1)
2 —y?=(x -y +xy+y?)
2 +yd=(x+y)x* —xy+y?)

*P2 book Ex1D Q6,7,8,9,10,12,23,24,28,29,31,33,35

17



Summation of Finite Series Using The Method Of Differences

n
Zr =1+2+3+--+n (frontwards)
r=1

n

Zr =n+(n—-—1)+m—-2)..3+2+1 (backwards)
r=1
Adding:-
n
ZZr: M+ D+@+D+m+D+m+D+0+1)+@n+1)
r=1
(n terms)
n
ZZ r=nn+1)
r=1
Result 1:-

S 1
Z r= En(n +1)
r=1

Note:- Here is another way you could sum the series1 +2 + 3 4 --- 4+ n.

Consider the identity
2r=r(r+1)—(r—-Dr

Taking successive values 1,2,3,....,n for r, we get:-

18



This method is called summing a series by the method of difference.

Genereally if it is possible to find a function f® such that the rth term u, of a series can be expressed as

n
E uT'
r=1

u, = f(r + 1) — f(r),then it is easy to find

We have for r=1,2,3,..,n
uw =f2)-f(1)
u, = f(3) = f(2)
us = f(4) - f(3)

Uy =f(n+1) - f(n)
Adding:-

n

D=+ D £

r=1

because all the other terms on R.H.S. cancel out.

Example 1:-Find
n
.
r=1

24r2+2=Q2r+1)3 - @2r-1)3

Consider the identity

And take r=1,2,3,...,n.

Solution

19



Result 2:-

Z r? = 1n(n +1)(2n+1)
6

r=1

Example 2:-Find
n
PR
r=1

a3 =r2(r+1)%2 — (r — 1)%r?

Consider the identity

And take r=1,2,3,...,n.

Solution

20



Result 3:-

Note:- Since

Then

Example 3:- Find

Consider the identity

And take r=1,2,3,...,n.

Solution

3rr+ D =rr+ D +2) - -DMHT+1)

21




Results for the sigma notation:-

1
Y afmy=a) f)
r=1 r=1
Proof:-
> af ) = af () +af () +af (3) + -+ af ()
r=1
> af@) = alf (D) + f@) + £(3) + -+ FO0]
r=1
) af) =a) ()
r=1 r=1
2.
D@ +gm) =) f@)+ ) g
r=1 r=1 r=1
Proof:-
D F@ +g0) = F) + g() + £@) + g(2) + - f() + gw)
r=1
D @)+ () = [F(D) + F@) + -+ F@)] +[9(1) + g(2) + -+ g(w)]
r=1
PNICETICEDWIGEDWIO
r=1 r=1 r=1
***Questions: P3 book Page 15 Exercise 2A Q1,3,4,7,9,10***

22



Telescoping Series

Example:- Find the value of

- 1
; 2n—D@2n+1)

Solution

The above is an example of a telescoping series, since the terms of S, other than the first and last, cancel out in

pairs.
23



Summation of Finite Series Using Standard Results

zn:r=1n(n+1)
2

r=

[

n

Zrz = %n(n +1)(2n+1)

r=1

n
1
Zr3 = an(n + 1)?
r=1

Example:- Find

Solution

24



Example:- Show

n

Zr(r+1)=§n(n+1)(n+2)

r=1

Solution

Example:- Find the following in terms of n.

n
Z 6r2 427
r=1

Solution

***Questions P3 book page 18 Ex2B Q1-3,5,-7,9-11,13,14,17,19

25



A-level Further Maths A21

Induction

A theorem thought to be true for all values of the positive integer n, can be proved by
showing that:-

(i) If it is true for n=k, then it is also true for n=k+1.
and
(ii)  Itis true for some small value of n such as n=1 (or perhaps n=2 or n=3)

If you prove both (i) and (ii) then you have shown that the theorem is true at the start
(usually n=1) and it ids true for n=1+1 and n=2+1 and n=3+1 and so on for all integer values
of n following on after the valid starting value (usually n=1).

Example 1 Use the method of mathematical induction to prove:-

n

1
Zr3 = an(n + 1)2

r=1

where n is a positive integer.

Proof

26



Example 2 Use the method of mathematical induction to prove that the expression:-
32" +7
Is divisible by 8 for all positive integers n.

Proof (Method 1)

**See other method too

27



Proof (Method 2)

28




Example Given that nis an integer, which is greater than 3, show that
n! > 2"

Proof

**P4 Book Page 279 Ex8A Q1-6,9,17,20,25,29,30,34, Extras: Q8,13,15

29



A-Level Further Maths A21

Maclaurins Series

Let f(x) be a function, which throughout a certain domain, including x=0 is

(a.) Differentiable any number of times ,and
(b.) The sum of a convergent power series.

Let this series be
f(x) = ag+ ayx + azx? + azx>® + agx* + agx® + -
so f(0) = aq
*differentiating term by term and putting x=0
f'(x) = a; + 2a,x + 3a3x? + 4a,x3 + 5agx* + -
so f'(0) = a;
f"(x) = 2a, + 6azx + 12a,x% + 20agx3 + -
so f"(0) = 2a,
or f""(0) = 2!a,
f""(x) = 6as + 24a,x + 60asx? + -
so f""(0) = 6as
or f'"(0) =3!a,

x2f1(0) x3f"(0)  x*f'(0) x"f™(0)
20 3 T ar Ut Tt

so you could write f(x) = f(0) + xf'(0) +

This is Maclaurins Series.

Exponential Series

Let f(x) = e*

30



Logarithmic Series

Let f(x) =In (1 +x)

31




Example
Expand cos x in ascending powers of x.

Solution

***p3 Book Exercise 2D

(next bit is not needed. Just to show)

Challenge

The ratio test is a sufficient condition for the convergence of an infinite

: L i :
series. It says that a series _a, converges if lim (’l“ < 1, and diverges
r=1 (4
e e |G

Use the ratio test to show that
a the Maclaurin series expansion of e~ converges for all x € R

Problem-solving

ar-f-l

ar
exist then the ratio test is
inconclusive.

If lim

li
P00

=1 or does not

o0
xT'
e* = —
r!
r=1
LTH1
. r+1)! . X
= lim (xr) = lim
roo | = r—oo (r+1)
T

| which is <1 for all x.

32




Binomial Series

Consider f(x) = (1+x)" forn€R
fG)=A+x)" sof(0)=1
ff)=n1+x)"?! sof'(0)=n
') =nn—1DA+x)"?2 sof"(0)=n(n-1)
") =nn-1Dm-2)A+x)"3 sof"(0)=n(n-1)(n-2)

ffx)=n(n—1)(n—-2).(n—r+1D)A+x)" sof"(0)=nn—-1)n-2)..(n—r+1)
Maclaurins gives:-

nn—Dx? nn-1Dn-2)x3 nn—-1Dnm-2)..(n—r+ Dx"
S+ T +o+ -

A+x)"=1+nx+

Which is the Binomial Series for any n € R and is convergent, provided |x| < 1.

If n € Z%, the series terminates and reduces to the Binomial Theorem.

Note Define (2) to be

(n) :n(n—l)(n—Z)..(n—r+1)

r r!

Example

-2
Expand (1 — 3x)3 up to terms including x3.

Solution

33



Example

1 1
Expand (1 — 3x)s inascending powers of x up to the term x3. Take x = % to find an approprimation for 295, giving

your answer correct to 5d.p.

Solution
Example

x
™= G=ma =0

(a.) Express f(x) in partial fractions
(b.) Expand f(x) up to terms including x3.
(c.) State the set of values of x for which the series is valid.

Solution

**Exercise 2C Q17,20-25

34



Using the Polynomial Series Form of Functions To Find Approximations For The Functions

X x®
smx—x—§+§+---
_ 1 x? x*
COoOSXx = —§+Z+“'

So if you take terms in x3 and higher powers of x to be negligible, then

2
. X .
sinx = xandcosx = 1 — 5 where x is small.

Also

t ML AN
anx =x+—+——+ -
3 1

So for small x, tanx = x.

Example

sin 2x

Find a quadratic polynomial approximation for , give that x is small.

Solution
Example
3sinx
Given that x is small, show that =
+cosx

Solution

35



Example

] 1—cos4x+xsin 3x
Show that llm > = 1 1
x—0 X

Solution

**pg 29 Exercise 2E (use the standard Maclaurins results in the formula booklet)
36



A21 Further Maths: Improper Integrals

What is an improper integral?
An improper integral is a definite integral for which the integrand (the expression to

be integrated) is undefined either within at one or both of the limits of integration, or
at some point between the limits of integration.

For example:

1 ?dx is an improper integral since one of its limits is infinity;
;de is an improper integral since it is undefined at x = 0.
X
11—2dx is an improper integral since it is undefined at x=0;
- X
:\/;dl is an improper integral since one of its limits is infinity;

Some improper integrals can be evaluated, others cannot. Remember that definite
integration is equivalent to finding the area under a graph between two points. In
some cases, an improper integral represents a finite area, even though the integrand
is undefined at some point.

These are the graphs representing each of the four improper integrals above:

37



It is clear that the area in the fourth graph is infinite, and therefore that the value of
the integral is undefined. However, in the cases of the other three graphs, the graphs
are all approaching one of the axes, so it is possible that the area under the graphs
may be finite, and therefore that the integral can be evaluated.

You can decide whether or not an improper integral has a finite value, and if so, what
it is, by considering limits.

Improper integrals with limits involving infinity

For improper integrals with limits involving infinity, you replace the limit of infinity with
a variable, work out the value of the integral in terms of the variable, and then look at
what happens as the value of the variable tends to infinity.

Example 1

Find, 1t possible, the values of
: = ]

(1) L —dx

2

(i1) j;\/? dx

Solution

(1)

(i1)

As expected from the graph, the integral J':\/:d.x cannot be found.

However, the integral J‘:’:Ljdx has been shown to have a finite value.
X-

38



Improper integrals where the integral is undefined at a particular
value

For improper integrals where the integrand is undefined at one of the limits of
integration, you use a similar technique to the one above: you replace the limit with a
variable, work out the value of the integral in terms of the variable, and then look at
what happens as the value of the variable tends to the original value.

If the integrand is undefined at a point between the limits, you need to split the
integral into two parts, so that the problem value is a limit of both parts, and then use
the technique above.

Example 2
Find, if possible, the values of

) I;%dx

(if) LIRS

-1 x—

Solution

@

(i1)

39



A21 Further Maths

Differentiation and Integration of Inverse Trig Functions

Graphs of inverse trigonometric functions

Y = arcsin X

Remember we defined )
. n ™Y Y =sin™ (x)
Yy =sin x 5T ,
to have domain // y =X
-% <X< g 1T
and the range is .y =Sin x
-1<sinx<1
} } i > X
T T
Our inverse - = -1 1 =
_ 2 2
Yy =sin1x 7
has domain i
-1<xx<1 17
and range // .
TC . TC -5 T
-5 <sin?x< 3 2
y = arccos Xx
We limit the domain to A y

O<x<m
and the range is
-1<cosx<1

The inverse function
looks like this.

It's a reflection ofy = C0S X
in the line y = X.

The domain of

Y= cos ! (x)

is -1<x<1

and the range is

O<cost(x)sm

40



Yy = arctan X

Limit it to / y
\ —
ey 3 Yy =tan x
’ ° 2 d =X
Reflect it in the line y =X .. //

... to get the inverse
y =tan ™ (x). Y=

The asymptotes
are also reflected.

The domain of
Yy =tan (x) 7
is x € IR ’

and the range is y

T ] T
-5 <tan 1(x)<§

Differentiation of Inverse Trig Functions
1.Lety =sin"lx « x =siny —1Sx£1and_7”§ys

' cosyd—y— 1
: 0=

dy 1

dx Cosy
dy 1

“dx +v1 — x2

* Buty = sin"! x is an increasing function between

Y . L
—1land 1,s0 — tive.
and 1, so I IS positive

Jd(sinTtx) 1
) dx 11— x2
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2.Lety =cos™lx ~x =cosy —1<x<land0<y<m

v ® 4
» —siny = =
dy -1
“dx  siny
dy —1
dx i\/l—xz

* But y = cos” ! x is a decreasing function between

—1and 1, so d_ic, s negative.
~d(cos™' x) -1

dx V1 —x?

3. Lety =tan"1x -°.x=tany—oo<x<00(0erR)and_7n<
T
y <3

dy
y 2 -_— =
. sec ydx 1
dy 1

“dx  sec?y
xsec’y =1+tan’y
dy 1

dx=1+x2

Sd(tan™'x) 1

dx 1+ x?

Result d(sin"'x) 1

RESHES dx  Vi-x?
d(cos™'x) -1

dx  V1—x2’

d(tan™*x) 1
dx 14«2
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Example Find Z—i’ when

(a.) y = cos™ ! x?

(b.) y = tan™*(e*)

Example Find an equation of the normal to the curve y = sin™! 2x at
point where x = %

*P3 Book Ex3C Q7-15
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Integration of ——— and —
g a?+x2 Ja2—x2
=1
1. Since d(sin™ " x) _ 1
d(sin™15)
then

dx

d(sm‘1 ) d(SiTl_lg) B 1

=
1><—
dx [ dx - VaZ —x?

hence f dx = sin 1—+c
va? — x2 a
-1
2. And since a0 _ _1
dx 1+x2
d(tan™1%) 1x=
then = t=—1
1+()
d(tan"lg ~ 1
dx B x\?
at+(3))
d(tan™1%) 1
dx a? + x2
( a? )
X
d(tan 15) ~ 1
dx  (a? + x?
( a? )
d(tan™! g) 1 d(tan_lg a
dx (az + xz) dx a? + x2
a
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Example Find (a.) fxzj_m dx (b.) f36ix2 dx

1

1.5 \/9—x2 dx

Example Evaluate [°

*UPM Ex15H Q13-24
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A21 Further Maths Reduction Formula

Integration by Parts

dvd _ dud
udx X = uv vdx X

Example Find [ xe* dx.
Example Find [ xcosx dx.
Example Find [ Inx dx.
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Example Find [ x2e?* dx.
Example Find I = [ e*sinx dx.
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Example FindI = folx(x —-1)3dx (definite integral)

*P2 Book Ex9D Q1,3,5,6,9,14,15,16,18,19
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Reduction Formula

Example

If I, = [ x"e™™ dx evaluate 5.
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Example

If I, = fgsinnx dx , show that I,, = nT_lln_z forn = 2.

Hence find (a.) 15 and (b.) 16
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Example Use the identity sec?A = 1 + tan?A to find a reduction formula for
i
4
I, = f tan™x dx
0

T T
Hence, evaluate (a.) f04 tan®x dx and (b.) f04 tan®x dx
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*P4 book Ex5A Q1,2,3,5,7,9-13,15, extras Q4,6 (tricky)
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A21 Further Maths Hyperbolic Functions

The exponential functions can be combined to form functions that have strong
similarities to trig (or circular) functions. These functions are called hyperbolic
cosine (cosh x) and hyperbolic sine (sinh x).

eX+e ™™ .. eXqe~ix

coshx = forx €R similar to cos x =

. eX—e™* . ) elX_e~ix
sinhx = > forx €R similar to sinx = =

These two definitions are basic and from them four other hyperbolic functions
are defined:-

sinhx eX¥—e™*

tanhx = =
coshx eX+4+e™*
e?* —1
s~ tanhx = —— or x €ER
ex +1 f
1 2
sechx = = for x €R

coshx eX+e*

1 2
cosechx = = forx ER,x #0

sinhx eX—e™X

1 e?* +1

cothx = = orx ER,x#0
tanhx e?*—1 f
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Graphs of Hyperbolic Functions

e —e=(7X) o™X _ X —(e* —e™)

sinh(—x) = > = > = > = —sinh x

So sinh x is an odd function.

Similarly

e X4 e (X)X X
cosh(—x) = > = 5 = coshx

So cosh x is an even function.

eX+e X eX—e™X ]
Also cosh x = > > = sinh x for all values.

First sketchy =e*andy = e™*

A

v

So

y = cosh x

y = sinh x
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2x

Since tanh x = = ,weseeatx = 0,tanhx = 0.

eZx41

—2x —_—1 2x
e -1 2X 1—e
Also, tanh(—x) = = ¢ =
! ( ) e~2X41 %+1 14+e2x
e

= —tanh x

So tanh x is an odd function.

er_l 1_e—2x

(by dividing through by e?*)

Now tanh x = =
e?*+1  1+e~2%%

Asx - ©,e %* - 0and tanhx —» 1

As x - —00,e?* - 0 and tanhx —» —1

A

The lines y = £1 are asymptotes to the curve.

Example Sketch y = sechx for x € R.
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Example Find the exact values of x for which tanh x = % )

Identities

Example Prove cosh?x — sinh?x = 1

Example Prove cosh(x + y) = cosh x cosh y + sinh x sinh y
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Example Find an identity for sinh 24 in terms of cosh A and sinh A.Hence find
an identity for tanh 2A4.

Osborne’s Rule:- The formulae for circular and hyperbolic functions correspond
exactly, provided the sign is changed whenever there exists a product (or
implied product ) of 2 sines.

i.e. the rule is to replace each trig function with its corresponding hyperbolic
function and change the sign of every product (or implied product ) of 2 sines.

e.g. cos 24 = 1 — sin?A

becomes cosh24 =1 + sinh?A

tan A—-tanB
1+tanAtanB

e.g.tan(A — B) =

tanh A-tanh B
1-tanh Atanh B

becomes tan(A — B) =

**P3 book Ex4A Q(1,2,3)alt parts, 4,5,7-170dds,18,20,22,23,25
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Graphs of Hyperbolic Functions

y4 2,’ YA
y=coshx
________________________ =l
y=tanhx

(0,1)

0 x o 5
____________________________________ yool
y=sinhx
A
3, i
)’dr
0.1)
y=sechx
2 x
0 4
¥ = cosech x

Asymptotesy =0 and x =0

ho)

IS
I T
> HC
[5)
_— -1
¥y = cothx

Asymptotesy = 1l and x =0
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Inverse Hyperbolic Functions

B )

e e e

A=
-

—
T

. y=artanh x

]
E
L
1
Il
1
¥
1
1
1
-
]
"
13
]
v
¥
L]
]
3
i
:
i
1
i
]
3

-
[
j>
, g,
=
ka3

»
:
X

y=sinhx

For the function cosh x, you need to take the domain x > 0, so that

it is

a one-one function. Then the inverse function arceshy is

defined for the domain x > 1 and range arcosh x > 0. The graphs of
coshx and arcosh x look like this:

¥ Jr

y=coshx

)

y=arcoshx

"

rll

(01)
In the same diagram, sketch the curves -

ve=sechy, xel® x20
y=arsechy, xeR, 0<x <

arsech 4

The curves are shown in the diacram. One is the
reflection of the other in the line y = x,
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The Logarithmic Form of Inverse Hyperbolic Functions

If y = sinh™1x then x = sinhy

ey_e_y

Thenx =
2x =e¥ —e™Y
2xeY =e? —1
0=e? —2xe¥ —1

_2xiV4x2+4

y
€ 2

e¥ =x++Vx2+1 bute? > 0so take the positive root.
e’ =x+ \/T-I-l

y =In (x + \/T-I-l)

ie. sinhlx =In(x+VxZ+1)

Similarly we can show:-

cosh™'x =In(x+Vx2—1) forx >1
tanh~'x = = In (12) for |x| < 1
2 1—-x

**These results are given in the formula booklet**

Example Express (a.) arcsinh% (b.) arccosh 3 (c.) arctanh_r3 in log form.

60



Example

Solve sinh?x + 5 = 4coshx

**P3 book Ex4A Q26,27,29,31,32,33,35,38,40
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The Derivatives of Hyperbolic Functions

Also

Example

Find

d(tanh x)
dx

eX¥ — e X
d(sinhx) d(T)
dx dx
d(sinhx) 1 y
oo T == E (e +e )
d(sinh x)
A T = cosh x
e*+e™*
d(coshx) d(T)
dx B dx
d(coshx) 1 y
F =5 (e*—e™)
d(coshx) _
o T = sinh x
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Example

d(cothx)
dx

Find

Example

d(sechx)
dx

Find

Example

Find

d(cosechx)
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Example

. . az
Giveny = cosx coshx, find d_szl'

Example

A curve is given by the equations x = cosht, y = sinht where tis a parameter.

(a.) Find the cartesian equation of the curve.
(b.) Find the equation of the tangent at point where t = In 2.
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The Derivatives of Inverse Hyperbolic Functions

1. y =sinh 1x

x = sinhy
dx h
o coshy
dy 1
dx coshy
dy 1

dx Jsinh?y + 1

*take the positive sign as cosh y is positive for all y and use 'cosh?y — sinh?y = 1" to

get...
dy 1
dx Vxz+1
~d(sinh™'x) 1
TTa Verd
2. y=cosh™1x
Xx = coshy
dx b
D sinhy
dy 1
dx sinhy
dy 1
dx 4+ [cosh?y + 1
dy 1
dx  +vx2 -1

(but cosh™! x is defined for y > 0 so sinhy > 0)

~d(cosh™ x) 1
) dx - x?—1
3. y=tanh™lx
x = tanhy
ax )
d_y = sech’y
dy 1

dx  sech?y

65



Remember 1 — sech? y = tanh?y so —= =

dy 1

dx 1-tanh2y
dy 1

dx 1 — x2

~d(tanh™'x) 1

dx 1— x2
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Results

f\/ﬁdx = sinh™1 G) +c¢ or In(x +Vx2+ a?)

f\/ﬁdx = cosh™? (g) +c¢ or In(x —vx%+a?), (x>a)

Example Find the equation of thhe tangent at the point where x = _?1

to the curve with equation y = tanh™1 x.

*P3 book Ex4B Q1-190dds, 21-25,27-530dds,54,56-59
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A21 Further Maths Differential Equations

Finding the general equation of a first order differential equation in
which the variables are separable.

dy
= =f()g)
1 dy

‘o) dx fx)

,[g(y) dy = Jf(x)dx +c
Example

Giventhaty = 2atx = 0 and % = y% + 4, find y in terms of x.

Solution

*P3 book Ex8A Q18-22
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First Order Linear Differential Equaations

A 1t order linear differential equation is of the form

d :
é + Py = Q where P and Q are functions of x or constants.

An equation of this form is said to be exact when one side is the exact
derivative of a product and the other side can be integrated wrt x.

If it is not exact then it can be made exact by multiplying through the
equation by a function of x. This function is called the integrating
factor.

Example
Consider the differential equation
dy 'y
— 4+ = 2
dx x *
Multiplying through by x gives...
dy
— 4y =x3
X T y=Xx
...making it exact.
cd(xy)
s =X
dx
R = fx3dx
. J— x4 _I_
SXY = 2 C

In this case the integrating factor is x.

Note:- The integrating factor is given by f(x) where f(x) = el Pdx
i.e.in the last example P = i

f f) = elx

f(X) — elnx
S f() =x



So the linear equation % + Py = (@ can be solved by multiplying by the

integgrating factor efpdx, provided el P% can be found and the

function Qefpdx can be integrated wrt x.

Example
Find the general solution of the differential equation
dy . . 3
Cosxa + ysinx = sinx cos® x

Solution
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Example
Find y in terms of x given that

Yz, >0andy=2atx =1
I 7Y =7 nx forx andy =2atx =

Solution

*P3 book Ex8C Q1-9,13,14,16,17,18
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The Second Order Linear Differential Equation

d’y = dy
a-—+ b + cy = 0 where a, b and c are constants
dx dx
The equation is called the 2" order, because its highest derivative of y
2
wrt X is d—y.
dx?

The equation is called linear because only 1t degree terms in y and its
derivatives occur.

Result: The general solution of the 2" order differential equation

2
d—y+b%+cy=0isy=Au+Bv,

a
dx?

where y = u and y = v are particular, distinct solutions of the
differential equation.

We now need to find the functions u and v in specific cases.

: : : d? d :
In the differential equation ad—szl + b ﬁ + cy = 0, try as a solution...

y = e™* where m is a constant to be found.

% = me™*
2
% = miemx

If y = e™* is a solution of the differential equation then
am?e™ + b me™* + ce™ =0
~am?+bm+c =0 (because e™ > 0 for all m)

The 2 values of m required are the roots of the quadratic equation
am?® + b m + ¢ = 0. This equation is called the Auxiliary Quadratic
Equation and it may have..

(i) Realroots (if b? — 4ac > 0)

(i)  Identical roots (if b?> — 4ac = 0)

(i)  Complex roots (if b? — 4ac < 0)
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Example

Find the general solution of the differential equation

d? d
v,
dx? dx

6y =0

Solution

Generalising:- The general solution of the differential equation
2
a% + b Z—i + cy = 0, whose auxiliary quadratic equation
am? + b m + ¢ = 0 has real distinct roots a and S is:-
y = Ae® + Be F*
(where A and B are constants)
*P3 Book Ex8D
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Auxiliary Quadratic Equation With Real Coincident Roots

Example

Find the general solution of the differential equation

d’y  dy
E—4a+4y—0

Solution

Generalising:- The general solution of the differential equation

d? d .. ) )
ad—x); + b d—i + cy = 0, whose auxiliary quadratic equation

am?® + b m + ¢ = 0 has equal roots « is:-
y = (A + Bx)e**
(where A and B are constants)
*P3 Book Ex8E
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Auxiliary Quadratic Equation With Pure Imaginary Roots

Example

Find the general solution of the differential equation

d?y
—Z 44y =0
dx? Ty

Solution

Result:- For the differential equation

dzy
2 —
W-FTL y=0

General solution is y = A cosnx + B sinnx (where A and B are
constants).
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Auxiliary Quadratic Equation With Complex Conjugate Roots

Example

Find the general solution of the differential equation

d’y  dy
w—ll-a'l- 13y—0

Solution

Result:- For the differential equation

d? d - : :
ad—x); + b d—z + cy = 0, where the auxiliary quadratic equation

am? + b m + ¢ = 0 has complex conjugate roots
p+igandp —iq (Wherepand q € R)

the general solution is y = ef*(A4 cos gx + B sin gx)
(where A and B are constants)

*P3 book Ex8F
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The Second Order Differential Equation

dzy dy
dxz + bd_ +cy = f(x)
To solve this type of differential equation:-
Method:-
1. Solve the differential equation
dzy dy
w +b a +cy=0

The solution is called the complementary function.
2. Find a solution of the equation

2
Zx}; + b? +cy = f(x)
where f(x)could be any one of these forms: —
(i) A constant k
(ii) A linear function px + q
(iii)  An exponential function ke?*

(iv) A trig function e.g. p sin x, g cos 2x or psin 3x + qcos3x

A solution of the differential equation for any of the forms of f(x)
given above can be found by inspection.

This solution, when found, is called a particular integral of the
equation.

3. The general solution of the diifferential equation is then
y=C.F.+P.I.
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Examples on finding the P.I.

Example

d’y ~_dy
W+3a+2y—f(x)

Find P.I. of this differential equation in the cases where f(x) = -+
(a.) 12 (b.)3x+5 (c.)3e?* (d.) cos 2x

Solution

(a.)

78



(c.)
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Example

Find y in terms of x for the differential equation

d’y ,dy
Tx2 +3dx+2y = COS 2x

given that %=Oatx=0andy=0atx=0.

Solution

*P3 book Ex8G Q1-90dds,17,20,23,26-30
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Polar Co-ordinates

Polar coordinates are an alternative way of describing the position of a point P in two-dimensional
space. You need two measurements: firstly, the distance the point is from the pole (usually the origin O),
1, and secondly, the angle measured anticlockwise from the initial line (usually the positive x-axis), 6.

Polar coordinates are written as (r, 6).
m When working in polar coordinates
’4 the axes might also be labelled like this:
=T
e
________ X ... Py or (0 E
g Ey ‘g
0 ' . =
0 X 0 Initial line

The coordinates of P can be written in either Cartesian form as (x, y) or in polar form as (r, 6).

You can convert between Cartesian coordinates and polar coordinates using right-angled triangle
trigonometry.

From the diagram above you can see that:

m FCosf=x m Always draw a sketch diagram

rsing=y to check in which quadrant the point lies, and
mp2=x24 2 always measure the polar angle from the positive
y X-axis.
6 = arctan (—)
X
Example

Find polar coordinates of the points with the following Cartesian coordinates.
a (3,4) b (5,-12) ¢ (—/3,-1)
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Example

Convert the following polar coordinates into Cartesian form. The angles are measured in radians.

47 2
a (10, ) b (5. 7)

Polar equations of curves are usually given in the form r = f(#). For example,

r=2cos6
r=1+20
Fe=3 @ In this example r is constant.

You can convert between polar equations of curves and their Cartesian forms.
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Example

Find Cartesian equations of the following curves.

ar=5 b r=2+cos26 ¢ r2=sin20, 0<8£—g—

Example
Find polar equations for the following:

a y>=4x b x2-)%=5 ¢ W3=x+4
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Sketching Curves

You can sketch curves given in polar form by learning the shapes of some standard curves.
m y=gqis acircle with centre O and radius a.

® @ = o is a half-line through O and making an angle a with the initial line.
= r=af is a spiral starting at O.

Example

Sketch the following curves.

3
ar=$5 b9=T7r c r=ab
where « is a positive constant.
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Example

Sketch the following curves.
a r=a(l +cosb) b r=asin30 ¢ r2=a*cos20
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Curves with equations of the form r = a(p + g cos 6) are defined for all values of @ if p = ¢. An example
of this, when p = g, was the cardioid seen in Example 6a. These curves fall into two types, those that
are ‘egg’ shaped (i.e. a convex curve) and those with a ‘dimple’ (i.e. the curve is concave at 8 = 7).

The conditions for each type are given below:

You can prove
these conditions by
considering the number
of tangents to the curve
that are perpendicular to
the initial line.

‘'egg’ shape when p = 2¢ dimple’ shape when ¢ < p < 2¢ sl
Example
Sketch the following curves.
a r=a(5+ 2cosb) b r=a(3 + 2cosb)
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@ If the pole is taken as the origin, and
the initial line is taken as the positive real axis,

then the point (r, 8) will represent the complex
number re'® « Section 1.1

You may also need to find a polar curve to
represent a locus of points on an Argand
diagram.

Example

a Show on an Argand diagram the locus of points given by the values of z satisfying
z-3-4i|=5
b Show that this locus of points can be represented by the polar curve r = 6cosé + 8siné.

Area Enclosed By A Curve

You can find areas enclosed by a polar curve using
integration.

= The area of a sector bounded by a polar curve
and the half-lines 6 = « and 6 = 3, where @ is
in radians, is given by the formula

Area =%fﬁr2d9
(81

Initial line
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Example

Find the area enclosed by the cardioid with equation r = a(l + cosb).

Example

Find the area of one loop of the curve with polar equation r = asin49.

m r = sinnf has n loops and so a simple way of finding the area of one loop would appear to be
= 2
to find %J;Z r2df and divide by . This would give 0—81

The reason why this is not the correct answer is because when you take r2in the integral you are also
including the n loops given by r < 0. You need to choose your limits carefully so that r = 0 for all values
within the range of the integral.
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Example

a On the same diagram, sketch the curves with equations r = 2 + cos@ and r = Scosé.
b Find the polar coordinates of the points of intersection of these two curves.
¢ Find the exact area of the region which lies within both curves.
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Tangents To Polar Curves

If you are given a curve r = f(6) in polar form, you can write it as a parametric curve in Cartesian form,
using @ as the parameter:

X =rcosf =f(0)cosb
p=rsin@ =f(@)sind

By differentiating parametrically, you can find the gradient of the curve at any point:

dy When % =0, a tangent to the curve will be horizontal.
dy_do
dx dx dx

dé When @ =0, a tangent to the curve will be vertical.

You need to be able to find tangents to a polar curve that are parallel or perpendicular to the initial
line.

d
= To find a tangent parallel to the initial line set d—;— =0,

= To find a tangent perpendicular to the initial line set de i
Example

Find the coordinates of the points on r = (1 + cos @) where the tangents are parallel to the initial
line 6 = 0.
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Example

Find the equations and the points of contact of the tangents to the curve r =asin20,0 < 0 < %
that are:

a parallel to the initial line b perpendicular to the initial line.

Give answers to three significant figures where appropriate.
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Summary of key points

1 Fora point P with polar coordinates (r, §) and Cartesian coordinates (x, y),
o rcosf=xandrsinf=y

-
2 — 2 2 ) e —
* re=x +y,6—arctan(x
Care must be taken to ensure that @ is in the correct quadrant.
2 + r=aisacircle with centre O and radius a.

+ 0= aisa half-line through O and making an angle « with the initial line.
« r=afisaspiral starting at O.

3 The area of a sector bounded by a polar curve and the half-lines # = a and 6 = 3, where @ is in
radians, is given by the formula
B
Area =1 L 12dé
d
4 -+ To find a tangent parallel to the initial line set d—z =0.

» To find a tangent perpendicular to the initial line set % =0
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