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A21 Further Maths 

Partial Fractions 

*knowledge of A-level Maths A21 Partial Fractions is assumed.

The process of taking a single fraction and breaking it up into the sum (or difference) of 2 or more fractions is known 

as splitting an expression into partial fractions. 

Note: If the degree of the numerator is greater than or equal to the degree of the denoinator you must first divide 

the numerator by the denominator. 

Quadratic factors in the denominator 

For a fraction that has a non-reducible quadratic factor on the denominator and where the degree of the 

denominator exceeds that of the numerator e.g. 

𝑥2 − 5𝑥 + 1

(𝑥2 + 1)(𝑥 − 2)

The partial fractions are of the form:- 

𝐴𝑥+𝐵

(𝑥2+1)
+

𝐶

(𝑥−2)
 where A,B and C are constants. 

Example 

Express 
5𝑥2+4𝑥+4

(𝑥+2)(𝑥2+4)
 in partial fractions. 

Solution 
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Note:- Remember to check that the denominator is completely factorised before attempting to put in partial 

fractions. 

Example 

Express 
−2𝑥−1

(𝑥2−3𝑥+2)(𝑥2−𝑥+3)
 in partial fractions. 

Solution 

Note:-  𝑥3 − 1 = (𝑥 − 1)(𝑥2 + 𝑥 + 1) 

𝑥3 + 1 = (𝑥 + 1)(𝑥2 − 𝑥 + 1) 

𝑥3 − 𝑦3 = (𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2) 

𝑥3 + 𝑦3 = (𝑥 + 𝑦)(𝑥2 − 𝑥𝑦 + 𝑦2) 

*P2 book Ex1D Q6,7,8,9,10,12,23,24,28,29,31,33,35
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Summation of Finite Series Using The Method Of Differences 

∑ 𝑟 = 1 + 2 + 3 + ⋯ + 𝑛

𝑛

𝑟=1

 (𝑓𝑟𝑜𝑛𝑡𝑤𝑎𝑟𝑑𝑠) 

∑ 𝑟 = 𝑛 + (𝑛 − 1) + (𝑛 − 2) … 3 + 2 + 1

𝑛

𝑟=1

 (𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠) 

Adding:- 

2 ∑ 𝑟 = (𝑛 + 1) + (𝑛 + 1) + (𝑛 + 1) + ⋯ (𝑛 + 1) + (𝑛 + 1) + (𝑛 + 1)

𝑛

𝑟=1

  

(n terms) 

2 ∑ 𝑟 = 𝑛(𝑛 + 1)

𝑛

𝑟=1

 

Result 1:- 

∑ 𝑟 =
1

2
𝑛(𝑛 + 1)

𝑛

𝑟=1

 

Note:- Here is another way you could sum the series 1 + 2 + 3 + ⋯ + 𝑛. 

Consider the identity 

2𝑟 ≡ 𝑟(𝑟 + 1) − (𝑟 − 1)𝑟 

Taking successive values 1,2,3,….,n for r, we get:- 
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This method is called summing a series by the method of difference. 

Genereally if it is possible to find a function f® such that the rth term ur of a series can be expressed as 

𝑢𝑟 = 𝑓(𝑟 + 1) − 𝑓(𝑟), then it is easy to find  

∑ 𝑢𝑟

𝑛

𝑟=1

 

We have for r=1,2,3,…,n 

𝑢1 = 𝑓(2) − 𝑓(1) 

𝑢2 = 𝑓(3) − 𝑓(2) 

𝑢3 = 𝑓(4) − 𝑓(3) 

. .         . .           .. 

. .         . .           .. 

𝑢𝑛 = 𝑓(𝑛 + 1) − 𝑓(𝑛) 

Adding:- 

∑ 𝑢𝑟

𝑛

𝑟=1

= 𝑓(𝑛 + 1) − 𝑓(1) 

because all the other terms on R.H.S. cancel out. 

Example 1:-Find 

∑ 𝑟2

𝑛

𝑟=1

 

Consider the identity  

24𝑟2 + 2 ≡ (2𝑟 + 1)3 − (2𝑟 − 1)3 

And take r=1,2,3,…,n. 

Solution 
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Result 2:- 

∑ 𝑟2 =
1

6
𝑛(𝑛 + 1)(2𝑛 + 1)

𝑛

𝑟=1

 

Example 2:-Find 

∑ 𝑟3

𝑛

𝑟=1

 

Consider the identity  

4𝑟3 ≡ 𝑟2(𝑟 + 1)2 − (𝑟 − 1)2𝑟2 

And take r=1,2,3,…,n. 

Solution 
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Result 3:- 

∑ 𝑟3 =
1

4
𝑛2(𝑛 + 1)2

𝑛

𝑟=1

 

Note:- Since  

∑ 𝑟 =
1

2
𝑛(𝑛 + 1)

𝑛

𝑟=1

 

Then 

∑ 𝑟3

𝑛

𝑟=1

= (∑ 𝑟

𝑛

𝑟=1

)

2

 

Example 3:- Find 

∑ 𝑟(𝑟 + 1)

𝑛

𝑟=1

 

Consider the identity  

3𝑟(𝑟 + 1) ≡ 𝑟(𝑟 + 1)(𝑟 + 2) − (𝑟 − 1)(𝑟)(𝑟 + 1) 

And take r=1,2,3,…,n. 

Solution 
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Results for the sigma notation:- 

1. 

∑ 𝑎𝑓(𝑟)

𝑛

𝑟=1

= 𝑎 ∑ 𝑓(𝑟)

𝑛

𝑟=1

 

Proof:- 

∑ 𝑎𝑓(𝑟)

𝑛

𝑟=1

= 𝑎𝑓(1) + 𝑎𝑓(2) + 𝑎𝑓(3) + ⋯ + 𝑎𝑓(𝑛) 

∑ 𝑎𝑓(𝑟)

𝑛

𝑟=1

= 𝑎[𝑓(1) + 𝑓(2) + 𝑓(3) + ⋯ + 𝑓(𝑛)] 

∴ ∑ 𝑎𝑓(𝑟)

𝑛

𝑟=1

= 𝑎 ∑ 𝑓(𝑟)

𝑛

𝑟=1

 

2. 

∑ 𝑓(𝑟)

𝑛

𝑟=1

+ 𝑔(𝑟) = ∑ 𝑓(𝑟)

𝑛

𝑟=1

+ ∑ 𝑔(𝑟)

𝑛

𝑟=1

Proof:- 

∑ 𝑓(𝑟)

𝑛

𝑟=1

+ 𝑔(𝑟) = 𝑓(1) + 𝑔(1) + 𝑓(2) + 𝑔(2) + ⋯ 𝑓(𝑛) + 𝑔(𝑛)

∑ 𝑓(𝑟)

𝑛

𝑟=1

+ 𝑔(𝑟) = [𝑓(1) + 𝑓(2) + ⋯ + 𝑓(𝑛)] + [𝑔(1) + 𝑔(2) + ⋯ + 𝑔(𝑛)]

∑ 𝑓(𝑟)

𝑛

𝑟=1

+ 𝑔(𝑟) = ∑ 𝑓(𝑟)

𝑛

𝑟=1

+ ∑ 𝑔(𝑟)

𝑛

𝑟=1

***Questions: P3 book Page 15 Exercise 2A Q1,3,4,7,9,10*** 
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Telescoping Series 

Example:- Find the value of 

∑
1

(2𝑛 − 1)(2𝑛 + 1)

∞

𝑛=1

Solution 

The above is an example of a telescoping series, since the terms of 𝑆𝑛, other than the first and last, cancel out in 

pairs. 
23



Summation of Finite Series Using Standard Results 

∑ 𝑟 =
1

2
𝑛(𝑛 + 1)

𝑛

𝑟=1

 

∑ 𝑟2 =
1

6
𝑛(𝑛 + 1)(2𝑛 + 1)

𝑛

𝑟=1

 

∑ 𝑟3 =
1

4
𝑛2(𝑛 + 1)2

𝑛

𝑟=1

 

Example:-  Find  

(𝑎. ) ∑ 𝑟2

20

𝑟=7

 

(𝑏. ) ∑ 𝑟3

25

𝑟=12

 

Solution 
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Example:- Show  

∑ 𝑟(𝑟 + 1) =
1

3
𝑛(𝑛 + 1)

𝑛

𝑟=1

(𝑛 + 2) 

Solution 

 

Example:- Find the following in terms of n. 

∑ 6𝑟2 + 2𝑟

𝑛

𝑟=1

 

Solution 

 

***Questions P3 book page 18 Ex2B Q1-3,5,-7,9-11,13,14,17,19 
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A-level Further Maths A21

Induction 

A theorem thought to be true for all values of the positive integer n, can be proved by 

showing that:- 

(i) If it is true for n=k, then it is also true for n=k+1.

and

(ii) It is true for some small value of n such as n=1 (or perhaps n=2 or n=3)

If you prove both (i) and (ii) then you have shown that the theorem is true at the start 

(usually n=1)  and it ids true for n=1+1 and n=2+1 and n=3+1 and so on for all integer values 

of n following on after the valid starting value (usually n=1). 

Example 1 Use the method of mathematical induction to prove:- 

∑𝑟3
𝑛

𝑟=1

=
1

4
𝑛2(𝑛 + 1)2 

where n is a positive integer. 

Proof 
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Example 2 Use the method of mathematical induction to prove that the expression:- 

32𝑛 + 7 

Is divisible by 8 for all positive integers n. 

Proof (Method 1) 

 

**See other method too 
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Proof (Method 2) 
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Example  Given that n is an integer, which is greater than 3, show that 

𝑛! > 2𝑛 

Proof 

 

**P4 Book Page 279 Ex8A Q1-6,9,17,20,25,29,30,34, Extras: Q8,13,15 
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A-Level Further Maths A21

Maclaurins Series 

Let f(x) be a function, which throughout a certain domain, including x=0 is 

(a.) Differentiable any number of times ,and 

(b.) The sum of a convergent power series. 

Let this series be 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + ⋯

𝑠𝑜 𝑓(0) = 𝑎0 

*differentiating term by term and putting x=0

𝑓′(𝑥) = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + 4𝑎4𝑥3 + 5𝑎5𝑥4 + ⋯

𝑠𝑜 𝑓′(0) = 𝑎1

𝑓′′(𝑥) = 2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥2 + 20𝑎5𝑥3 + ⋯

𝑠𝑜 𝑓′′(0) = 2𝑎2

𝑜𝑟 𝑓′′(0) = 2! 𝑎2

𝑓′′′(𝑥) = 6𝑎3 + 24𝑎4𝑥 + 60𝑎5𝑥2 + ⋯

𝑠𝑜 𝑓′′′(0) = 6𝑎3

𝑜𝑟 𝑓′′′(0) = 3! 𝑎2

𝑠𝑜 𝑦𝑜𝑢 𝑐𝑜𝑢𝑙𝑑 𝑤𝑟𝑖𝑡𝑒 𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2𝑓′′(0)

2!
+

𝑥3𝑓′′′(0)

3!
+

𝑥4𝑓′𝑣(0)

4!
+ ⋯ +

𝑥𝑛𝑓𝑛(0)

𝑛!
+ ⋯

This is Maclaurins Series. 

Exponential Series 

𝐿𝑒𝑡 𝑓(𝑥) = 𝑒𝑥 

30



Logarithmic Series 

𝐿𝑒𝑡 𝑓(𝑥) = ln (1 + 𝑥) 

31



Example 

Expand cos 𝑥 in ascending powers of x. 

Solution 

 

***P3 Book Exercise 2D 

(next bit is not needed. Just to show) 

 

 

 

𝑒𝑥 = ∑
𝑥𝑟

𝑟!

∞

𝑟=1

 

 

        = lim
𝑟→∞

|

𝑥𝑟+1

(𝑟+1)!

𝑥𝑟

𝑟!

| = lim
𝑟→∞

|
𝑥

(𝑟+1)
| which is <1 for all x. 
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Binomial Series 

Consider 𝑓(𝑥) = (1 + 𝑥)𝑛  𝑓𝑜𝑟 𝑛 ∈ 𝑅 

𝑓(𝑥) = (1 + 𝑥)𝑛     𝑠𝑜 𝑓(0) = 1 

𝑓′(𝑥) = 𝑛(1 + 𝑥)𝑛−1     𝑠𝑜 𝑓′(0) = 𝑛 

𝑓′′(𝑥) = 𝑛(𝑛 − 1)(1 + 𝑥)𝑛−2     𝑠𝑜 𝑓′′(0) = 𝑛(𝑛 − 1) 

𝑓′′′(𝑥) = 𝑛(𝑛 − 1)(𝑛 − 2)(1 + 𝑥)𝑛−3     𝑠𝑜 𝑓′′′(0) = 𝑛(𝑛 − 1)(𝑛 − 2) 

. 

. 

. 

𝑓𝑟(𝑥) = 𝑛(𝑛 − 1)(𝑛 − 2). . (𝑛 − 𝑟 + 1)(1 + 𝑥)𝑟     𝑠𝑜 𝑓𝑟(0) = 𝑛(𝑛 − 1)(𝑛 − 2). . (𝑛 − 𝑟 + 1) 

Maclaurins gives:- 

(1 + 𝑥)𝑛 = 1 + 𝑛𝑥 +
𝑛(𝑛 − 1)𝑥2

2!
+

𝑛(𝑛 − 1)(𝑛 − 2)𝑥3

3!
+. . +

𝑛(𝑛 − 1)(𝑛 − 2). . (𝑛 − 𝑟 + 1)𝑥𝑟

𝑟!

Which is the Binomial Series for any 𝑛 ∈ 𝑅 and is convergent, provided |𝑥| < 1. 

If 𝑛 ∈ 𝑍+, the series terminates and reduces to the Binomial Theorem. 

Note Define (
𝑛
𝑟

) to be 

(
𝑛
𝑟

) =
𝑛(𝑛 − 1)(𝑛 − 2). . (𝑛 − 𝑟 + 1)

𝑟!

Example 

Expand (1 − 3𝑥)
−2

3  up to terms including 𝑥3. 

Solution 
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Example 

Expand (1 − 3𝑥)
1

5 inascending powers of x up to the term 𝑥3. Take 𝑥 =
1

32
 to find an approprimation for 29

1

5, giving 

your answer correct to 5d.p. 

Solution 

 

Example 

𝑓(𝑥) =
𝑥

(3 − 2𝑥)(2 − 𝑥)
 

(a.) Express 𝑓(𝑥) in partial fractions 

(b.) Expand 𝑓(𝑥) up to terms including 𝑥3. 

(c.) State the set of values of x for which the series is valid. 

Solution 

 

**Exercise 2C Q17,20-25 
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Using the Polynomial Series Form of Functions To Find Approximations For The Functions 

sin 𝑥 = 𝑥 −
𝑥3

3!
+

𝑥5

5!
+ ⋯ 

cos 𝑥 = 1 −
𝑥2

2!
+

𝑥4

4!
+ ⋯ 

So if you take terms in 𝑥3 and higher powers of x to be negligible, then 

sin 𝑥 ≈ 𝑥 and cos 𝑥 ≈ 1 −
𝑥2

2
 where x is small. 

Also  

tan 𝑥 = 𝑥 +
𝑥3

3
+

2𝑥5

15
+ ⋯ 

So for small x, tan 𝑥 ≈ 𝑥. 

Example 

Find a quadratic polynomial approximation for 
sin 2𝑥

1+𝑥
 , give that x is small. 

Solution 

 

Example 

Given that x is small, show that 
3sin 𝑥

2+cos 𝑥
≈ 𝑥. 

Solution 
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Example 

Show that lim
𝑥→0

1−cos 4𝑥+𝑥𝑠𝑖𝑛 3𝑥

𝑥2 = 11 

Solution 

 

**pg 29 Exercise 2E (use the standard Maclaurins results in the formula booklet) 
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A21 Further Maths: Improper Integrals 
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A21 Further Maths 

Differentiation and Integration of Inverse Trig Functions 

Graphs of inverse trigonometric functions 

𝑦 = arcsin 𝑥 

𝑦 = arccos 𝑥 
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𝑦 = arctan 𝑥 

 

Differentiation of Inverse Trig Functions 

1. Let y = sin−1 𝑥  ∴ 𝑥 = sin 𝑦  −1 ≤ 𝑥 ≤ 1 and 
−𝜋

2
≤ 𝑦 ≤

𝜋

2
 

∴  cos 𝑦
𝑑𝑦

𝑑𝑥
= 1 

∴
𝑑𝑦

𝑑𝑥
=

1

 cos 𝑦
 

∴
𝑑𝑦

𝑑𝑥
=

1

±√1 − 𝑥2
 

∗ 𝐵𝑢𝑡 y = sin−1 𝑥  𝑖𝑠 𝑎𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 

− 1 𝑎𝑛𝑑 1, 𝑠𝑜 
𝑑𝑦

𝑑𝑥
 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒. 

 

∴
𝑑(sin−1 𝑥)

𝑑𝑥
=

1

√1 − 𝑥2
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2. Let y = cos−1 𝑥  ∴ 𝑥 = cos 𝑦  −1 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 𝜋 

∴  −sin 𝑦
𝑑𝑦

𝑑𝑥
= 1 

∴
𝑑𝑦

𝑑𝑥
=

−1

 sin 𝑦
 

∴
𝑑𝑦

𝑑𝑥
=

−1

±√1 − 𝑥2
 

∗ 𝐵𝑢𝑡 y = cos−1 𝑥  𝑖𝑠 𝑎 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 

− 1 𝑎𝑛𝑑 1, 𝑠𝑜 
𝑑𝑦

𝑑𝑥
 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒. 

∴
𝑑(cos−1 𝑥)

𝑑𝑥
=

−1

√1 − 𝑥2
 

 

3. Let y = tan−1 𝑥  ∴ 𝑥 = tan 𝑦 −∞ < 𝑥 < ∞ (or 𝑥 ∈ 𝑅)and 
−𝜋

2
<

𝑦 <
𝜋

2
 

∴  se𝑐2 𝑦
𝑑𝑦

𝑑𝑥
= 1 

∴
𝑑𝑦

𝑑𝑥
=

1

se𝑐2 𝑦
 

∗ se𝑐2 𝑦 = 1 + ta𝑛2 𝑦 

∴
𝑑𝑦

𝑑𝑥
=

1

1 + 𝑥2
 

 

∴
𝑑(tan−1 𝑥)

𝑑𝑥
=

1

1 + 𝑥2
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results  
𝑑(𝑠𝑖𝑛−1 𝑥)

𝑑𝑥
=

1

√1−𝑥2
 

 
𝑑(cos−1 𝑥)

𝑑𝑥
=

−1

√1−𝑥2
 , 

 

𝑑(𝑡𝑎𝑛−1 𝑥)

𝑑𝑥
=

1

1 + 𝑥2
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Example Find 
𝑑𝑦

𝑑𝑥
 when  

(a.) 𝑦 = cos−1 𝑥2 

 
(b.) 𝑦 = tan−1(𝑒3𝑥) 

 
Example   Find an equation of the normal to the curve 𝑦 = sin−1 2𝑥 at 

point where 𝑥 =
1

4
. 

 
*P3 Book Ex3C Q7-15 
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Integration of  
𝟏

𝒂𝟐+𝒙𝟐 and 
𝟏

√𝒂𝟐−𝒙𝟐
 

 

1. Since 
𝑑(𝑠𝑖𝑛−1 𝑥)

𝑑𝑥
=

1

√1−𝑥2
 

 

then 
𝑑(𝑠𝑖𝑛−1𝑥

𝑎
)

𝑑𝑥
=

1×
1

𝑎

√1−(
𝑥

𝑎
)

2
 

∴
𝑑(𝑠𝑖𝑛−1 𝑥

𝑎
)

𝑑𝑥
=

1

𝑎√1 − (
𝑥
𝑎)

2
          ∴

𝑑(𝑠𝑖𝑛−1 𝑥
𝑎

)

𝑑𝑥
=

1

√𝑎2 − 𝑥2
 

ℎ𝑒𝑛𝑐𝑒 ∫
1

√𝑎2 − 𝑥2
𝑑𝑥 = 𝑠𝑖𝑛−1

𝑥

𝑎
+ 𝑐 

 

2. And since 
𝑑(𝑡𝑎𝑛−1 𝑥)

𝑑𝑥
=

1

1+𝑥2 

 

then 
𝑑(𝑡𝑎𝑛−1𝑥

𝑎
)

𝑑𝑥
=

1×
1

𝑎

1+(
𝑥

𝑎
)

2 

 

∴
𝑑(𝑡𝑎𝑛−1 𝑥

𝑎
)

𝑑𝑥
=

1

𝑎(1 + (
𝑥
𝑎)

2
)
 

∴
𝑑(𝑡𝑎𝑛−1 𝑥

𝑎
)

𝑑𝑥
=

1

𝑎 (
𝑎2 + 𝑥2

𝑎2 )
 

∴
𝑑(𝑡𝑎𝑛−1 𝑥

𝑎
)

𝑑𝑥
=

1

𝑎 (
𝑎2 + 𝑥2

𝑎2 )
 

 

∴
𝑑(𝑡𝑎𝑛−1 𝑥

𝑎
)

𝑑𝑥
=

1

(
𝑎2 + 𝑥2

𝑎
)

     ∴
𝑑(𝑡𝑎𝑛−1 𝑥

𝑎
)

𝑑𝑥
=

𝑎

𝑎2 + 𝑥2
 

ℎ𝑒𝑛𝑐𝑒 ∫
1

𝑎2 + 𝑥2
𝑑𝑥 =

1

𝑎
𝑡𝑎𝑛−1

𝑥

𝑎
+ 𝑐 
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Example Find (a.) ∫
4

𝑥2+16
𝑑𝑥        (b.) ∫

2

36+𝑥2 𝑑𝑥 

Example Evaluate ∫
1

√9−𝑥2

0

−1.5
𝑑𝑥 

*UPM Ex15H Q13-24
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A21 Further Maths Reduction Formula 

Integration by Parts 

∫ 𝑢
𝑑𝑣

𝑑𝑥
 𝑑𝑥 = 𝑢𝑣 − ∫ 𝑣

𝑑𝑢

𝑑𝑥 
𝑑𝑥 

Example Find ∫ 𝑥𝑒𝑥 𝑑𝑥. 

Example Find ∫ 𝑥𝑐𝑜𝑠𝑥 𝑑𝑥. 

Example Find ∫ 𝑙𝑛𝑥 𝑑𝑥. 
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Example Find ∫ 𝑥2𝑒2𝑥 𝑑𝑥. 

 

Example Find 𝐼 = ∫ 𝑒𝑥𝑠𝑖𝑛𝑥 𝑑𝑥. 
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Example Find 𝐼 = ∫ 𝑥(𝑥 − 1)3 𝑑𝑥
1

0
 (definite integral) 

 

 

*P2 Book Ex9D Q1,3,5,6,9,14,15,16,18,19  
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Reduction Formula 

Example If 𝐼𝑛 = ∫ 𝑥𝑛𝑒−𝑥 𝑑𝑥 evaluate 𝐼3.
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Example

If 𝐼𝑛 = ∫ 𝑠𝑖𝑛𝑛𝑥 𝑑𝑥
𝜋

2
0

, show that 𝐼𝑛 =
𝑛−1

𝑛
𝐼𝑛−2  𝑓𝑜𝑟 𝑛 ≥ 2.

Hence find (a.) 𝐼5 and (b.) 𝐼6 
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Example Use the identity 𝑠𝑒𝑐2𝐴 ≡ 1 + 𝑡𝑎𝑛2𝐴 to find a reduction formula for 

𝐼𝑛 = ∫ 𝑡𝑎𝑛𝑛𝑥 𝑑𝑥

𝜋
4

0

Hence, evaluate (a.) ∫ 𝑡𝑎𝑛5𝑥 𝑑𝑥
𝜋

4
0

 and (b.) ∫ 𝑡𝑎𝑛6𝑥 𝑑𝑥
𝜋

4
0
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*P4 book Ex5A Q1,2,3,5,7,9-13,15, extras Q4,6 (tricky)
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A21 Further Maths Hyperbolic Functions 

The exponential functions can be combined to form functions that have strong 

similarities to trig (or circular) functions. These functions are called hyperbolic 

cosine (cosh x) and hyperbolic sine (sinh x). 

cosh 𝑥 =
𝑒𝑥+𝑒−𝑥

2
 𝑓𝑜𝑟 𝑥 ∈ 𝑅   similar to cos 𝑥 =

𝑒𝑖𝑥+𝑒−𝑖𝑥

2

sinh 𝑥 =
𝑒𝑥−𝑒−𝑥

2
 𝑓𝑜𝑟 𝑥 ∈ 𝑅   similar to sin 𝑥 =

𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖

These two definitions are basic and from them four other hyperbolic functions 

are defined:- 

tanh 𝑥 =
sinh 𝑥

cosh 𝑥
=

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

∴ tanh 𝑥 =
𝑒2𝑥 − 1

𝑒2𝑥 + 1
 𝑓𝑜𝑟 𝑥 ∈ 𝑅 

sech 𝑥 =
1

cosh 𝑥
=

2

𝑒𝑥 + 𝑒−𝑥
 𝑓𝑜𝑟 𝑥 ∈ 𝑅 

cosech 𝑥 =
1

sinh 𝑥
=

2

𝑒𝑥 − 𝑒−𝑥
 𝑓𝑜𝑟 𝑥 ∈ 𝑅, 𝑥 ≠ 0 

coth 𝑥 =
1

tanh 𝑥
=

𝑒2𝑥 + 1

𝑒2𝑥 − 1
 𝑓𝑜𝑟 𝑥 ∈ 𝑅, 𝑥 ≠ 0 
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Graphs of Hyperbolic Functions 

sinh(−𝑥) =
𝑒−𝑥 − 𝑒−(−𝑥)

2
=

𝑒−𝑥 − 𝑒𝑥

2
=

−(𝑒𝑥 − 𝑒−𝑥)

2
= −sinh 𝑥 

So sinh 𝑥 is an odd function. 

Similarly  

cosh(−𝑥) =
𝑒−𝑥 + 𝑒−(−𝑥)

2
=

𝑒𝑥 + 𝑒−𝑥

2
= cosh 𝑥 

So cosh 𝑥 is an even function. 

Also cosh 𝑥 =
𝑒𝑥+𝑒−𝑥

2
>

𝑒𝑥−𝑒−𝑥

2
= sinh 𝑥 for all values. 

 

First sketch 𝑦 = 𝑒𝑥  𝑎𝑛𝑑 𝑦 = 𝑒−𝑥 

 

So 

 

 

 

 

y = cosh 𝑥 

y = sinh 𝑥 
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Since  tanh 𝑥 =
𝑒2𝑥−1

𝑒2𝑥+1
   , we see at 𝑥 = 0, tanh 𝑥 = 0.    

Also, tanh(−𝑥) =
𝑒−2𝑥−1

𝑒−2𝑥+1
=

1

𝑒2𝑥−1

1

𝑒2𝑥+1
=

1−𝑒2𝑥

1+𝑒2𝑥 = −tanh 𝑥      

So tanh 𝑥  is an odd function. 

Now tanh 𝑥 =
𝑒2𝑥−1

𝑒2𝑥+1
=

1−𝑒−2𝑥

1+𝑒−2𝑥    (by dividing through by 𝑒2𝑥) 

As 𝑥 → ∞, 𝑒−2𝑥 → 0 𝑎𝑛𝑑 tanh 𝑥 → 1   

As 𝑥 → −∞, 𝑒2𝑥 → 0 𝑎𝑛𝑑 tanh 𝑥 → −1   

 

The lines 𝑦 = ±1 are asymptotes to the curve. 

 

Example Sketch 𝑦 = sech 𝑥  𝑓𝑜𝑟 𝑥 ∈ 𝑅. 
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Example Find the exact values of 𝑥 for which tanh 𝑥 =
1

2
   . 

 

Identities 

Example Prove 𝑐𝑜𝑠ℎ2𝑥 − 𝑠𝑖𝑛ℎ2𝑥 ≡ 1 

 

Example Prove cosh(𝑥 + 𝑦) ≡ cosh 𝑥 cosh 𝑦 + sinh 𝑥 sinh 𝑦 
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Example Find an identity for sinh 2𝐴 in terms of cosh 𝐴 and sinh 𝐴.Hence find 

an identity for tanh 2𝐴. 

 

Osborne’s Rule:- The formulae for circular and hyperbolic functions correspond 

exactly, provided the sign is changed whenever there exists a product (or 

implied product ) of 2 sines. 

i.e. the rule is to replace each trig function with its corresponding hyperbolic 

function and change the sign of every product (or implied product ) of 2 sines. 

e.g. cos 2𝐴 = 1 − 𝑠𝑖𝑛2𝐴 

becomes  cosh 2𝐴 = 1 + 𝑠𝑖𝑛ℎ2𝐴 

e.g. tan(𝐴 − 𝐵) =
tan 𝐴−tan 𝐵

1+tan 𝐴 tan 𝐵
 

becomes tan(𝐴 − 𝐵) =
tanh 𝐴−tanh 𝐵

1−tanh 𝐴 tanh 𝐵
 

 

**P3 book Ex4A Q(1,2,3)alt parts, 4,5,7-17odds,18,20,22,23,25 
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Graphs of Hyperbolic Functions 
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Inverse Hyperbolic Functions 

  

3.  
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The Logarithmic Form of Inverse Hyperbolic Functions 

If 𝑦 = 𝑠𝑖𝑛ℎ−1𝑥  𝑡ℎ𝑒𝑛 𝑥 = sinh 𝑦 

Then 𝑥 =
𝑒𝑦−𝑒−𝑦

2
 

2𝑥 = 𝑒𝑦 − 𝑒−𝑦 

2𝑥𝑒𝑦 = 𝑒2𝑦 − 1 

0 = 𝑒2𝑦 − 2𝑥𝑒𝑦 − 1 

𝑒𝑦 =
2𝑥 ± √4𝑥2 + 4

2
 

𝑒𝑦 = 𝑥 ± √𝑥2 + 1    but 𝑒𝑦 > 0 𝑠𝑜 𝑡𝑎𝑘𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑜𝑜𝑡. 

𝑒𝑦 = 𝑥 + √𝑥2 + 1 

𝑦 = ln (𝑥 + √𝑥2 + 1) 

i.e.   𝑠𝑖𝑛ℎ−1𝑥  = ln (𝑥 + √𝑥2 + 1) 

 

Similarly we can show:- 

𝑐𝑜𝑠ℎ−1𝑥  = ln (𝑥 + √𝑥2 − 1)  for 𝑥 ≥ 1 

 

𝑡𝑎𝑛ℎ−1𝑥 =
1

2
𝑙𝑛 (

1+𝑥

1−𝑥
)  for |𝑥| < 1 

 

**These results are given in the formula booklet** 

Example Express (a.) arcsinh
3

4
   (b.) arccosh 3   (c.) arctanh

−3

4
   in log form. 
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Example  

Solve   𝑠𝑖𝑛ℎ2𝑥 + 5 = 4 cosh 𝑥 

 

**P3 book Ex4A Q26,27,29,31,32,33,35,38,40 
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The Derivatives of Hyperbolic Functions 

𝑑(sinh 𝑥)

𝑑𝑥
=

𝑑(
𝑒𝑥 − 𝑒−𝑥

2
)

𝑑𝑥
 

∴
𝑑(sinh 𝑥)

𝑑𝑥
=

1

2
(𝑒𝑥 + 𝑒−𝑥) 

∴
𝑑(sinh 𝑥)

𝑑𝑥
= cosh 𝑥 

 

Also  

𝑑(cosh 𝑥)

𝑑𝑥
=

𝑑(
𝑒𝑥 + 𝑒−𝑥

2
)

𝑑𝑥
 

∴
𝑑(cosh 𝑥)

𝑑𝑥
=

1

2
(𝑒𝑥 − 𝑒−𝑥) 

∴
𝑑(cosh 𝑥)

𝑑𝑥
= sinh 𝑥 

Example 

Find 
𝑑(tanh 𝑥)

𝑑𝑥
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Example 

Find 
𝑑(coth 𝑥)

𝑑𝑥
 

 

Example 

Find 
𝑑(sech 𝑥)

𝑑𝑥
 

 

Example 

Find 
𝑑(cosech 𝑥)

𝑑𝑥
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Example 

Given 𝑦 = cos 𝑥 cosh 𝑥,   𝑓𝑖𝑛𝑑 
𝑑2𝑦

𝑑𝑥2
. 

 

Example 

A curve is given by the equations 𝑥 = cosh 𝑡 , 𝑦 = sinh 𝑡 where t is a parameter. 

(a.) Find the cartesian equation of the curve. 

(b.) Find the equation of the tangent at point where 𝑡 = ln 2. 
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The Derivatives of Inverse Hyperbolic Functions 

1. 𝑦 = sinℎ−1 𝑥 

𝑥 = sinh 𝑦 

 
𝑑𝑥

𝑑𝑦
= cosh 𝑦 

𝑑𝑦

𝑑𝑥
=

1

cosh 𝑦
 

𝑑𝑦

𝑑𝑥
=

1

√sinℎ2𝑦 + 1
 

*take the positive sign as cosh 𝑦 is positive for all y and use ′cosℎ2𝑦 − sinℎ2𝑦 = 1′ to 

get… 
𝑑𝑦

𝑑𝑥
=

1

√𝑥2 + 1
 

 

∴
𝑑(sinℎ−1 𝑥)

𝑑𝑥
=

1

√𝑥2 + 1
 

 

2. 𝑦 = cosℎ−1 𝑥 

𝑥 = cosh 𝑦 

 
𝑑𝑥

𝑑𝑦
= sinh 𝑦 

𝑑𝑦

𝑑𝑥
=

1

sinh 𝑦
 

𝑑𝑦

𝑑𝑥
=

1

±√cosℎ2𝑦 + 1
 

𝑑𝑦

𝑑𝑥
=

1

±√𝑥2 − 1
 

 

(but cosℎ−1 𝑥 is defined for 𝑦 ≥ 0  so sinh 𝑦 ≥ 0) 

 

∴
𝑑(cosℎ−1 𝑥)

𝑑𝑥
=

1

√𝑥2 − 1
 

3. 𝑦 = tanℎ−1 𝑥 

𝑥 = tanh 𝑦 

 
𝑑𝑥

𝑑𝑦
= secℎ2 𝑦 

𝑑𝑦

𝑑𝑥
=

1

secℎ2 𝑦
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Remember 1 − secℎ2 𝑦 = tanℎ2 𝑦   𝑠𝑜  
𝑑𝑦

𝑑𝑥
=

1

1−tanℎ2 𝑦
 

𝑑𝑦

𝑑𝑥
=

1

1 − 𝑥2
 

 

 

∴
𝑑(tanℎ−1 𝑥)

𝑑𝑥
=

1

1 − 𝑥2
 

 

 
 

 
 

 

4.
𝑑 (sinh−1 (

𝑥
𝑎))

𝑑𝑥
= 

 

5.
𝑑 (cosh−1 (

𝑥
𝑎))

𝑑𝑥
= 

 

6.
𝑑 (tanh−1 (

𝑥
𝑎

))

𝑑𝑥
= 
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Results 

∫
1

√𝑥2+𝑎2
𝑑𝑥 = 𝑠𝑖𝑛ℎ−1 (

𝑥

𝑎
) + 𝑐   𝑜𝑟   ln(𝑥 + √𝑥2 + 𝑎2) 

 

∫
1

√𝑥2−𝑎2
𝑑𝑥 = 𝑐𝑜𝑠ℎ−1 (

𝑥

𝑎
) + 𝑐   𝑜𝑟   ln(𝑥 − √𝑥2 + 𝑎2),   (𝑥 > 𝑎) 

 

Example Find the equation of thhe tangent at the point where 𝑥 =
−1

2
 

to the curve with equation y = tanh−1 𝑥. 

 
*P3 book Ex4B Q1-19odds, 21-25,27-53odds,54,56-59 
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A21 Further Maths Differential Equations 

Finding the general equation of a first order differential equation in 

which the variables are separable. 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥)𝑔(𝑦) 

∴
1

𝑔(𝑦)

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥) 

∴ ∫
1

𝑔(𝑦)
𝑑𝑦 = ∫ 𝑓(𝑥)𝑑𝑥 + 𝑐 

Example 

Given that 𝑦 = 2 at 𝑥 = 0 and 
𝑑𝑦

𝑑𝑥
= 𝑦2 + 4, find 𝑦 in terms of 𝑥. 

Solution 

*P3 book Ex8A Q18-22
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First Order Linear Differential Equaations 

A 1st order linear differential equation is of the form 
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄 where P and Q are functions of x or constants. 

 

An equation of this form is said to be exact when one side is the exact 

derivative of a product and the other side can be integrated wrt x. 

 

If it is not exact then it can be made exact by multiplying  through the 

equation by a function of x. This function is called the integrating 

factor. 

 

Example 

Consider the differential equation 
𝑑𝑦

𝑑𝑥
+

𝑦

𝑥
= 𝑥2 

Multiplying through by x gives… 

𝑥
𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑥3 

…making it exact. 

∴
𝑑(𝑥𝑦)

𝑑𝑥
= 𝑥3 

∴ 𝑥𝑦 = ∫ 𝑥3𝑑𝑥 

∴ 𝑥𝑦 =
𝑥4

4
+ 𝑐 

In this case the integrating factor is x. 

 

Note:- The integrating factor is given by 𝑓(𝑥) where 𝑓(𝑥) = 𝑒∫ 𝑃𝑑𝑥. 

i.e. in the last example 𝑃 =
1

𝑥
  

∴ 𝑓(𝑥) = 𝑒∫
1
𝑥

 𝑑𝑥 

∴ 𝑓(𝑥) = 𝑒ln 𝑥 

∴ 𝑓(𝑥) = 𝑥 
69



So the linear equation 
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄 can be solved by multiplying by the 

integgrating factor 𝑒∫ 𝑃𝑑𝑥, provided 𝑒∫ 𝑃𝑑𝑥 can be found and the 

function 𝑄𝑒∫ 𝑃𝑑𝑥 can be integrated wrt x. 

 

Example 

Find the general solution of the differential equation 

cos 𝑥
𝑑𝑦

𝑑𝑥
+ 𝑦 sin 𝑥 = sin 𝑥 𝑐𝑜𝑠3 𝑥 

Solution 
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Example 

Find 𝑦 in terms of 𝑥 given that 
𝑑𝑦

𝑑𝑥
−

2

𝑥
𝑦 = 𝑥2 ln 𝑥  𝑓𝑜𝑟 𝑥 > 0 𝑎𝑛𝑑 𝑦 = 2 𝑎𝑡 𝑥 = 1 

Solution 

 

*P3 book Ex8C Q1-9,13,14,16,17,18 
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The Second Order Linear Differential Equation 

𝑎
𝑑2𝑦

𝑑𝑥2
+ 𝑏

𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

The equation is called the 2nd order, because its highest derivative of y 

wrt x is 
𝑑2𝑦

𝑑𝑥2. 

The equation is called linear because only 1st degree terms in y and its 

derivatives occur. 

Result: The general solution of the 2nd order differential equation 

𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0 is 𝑦 = 𝐴𝑢 + 𝐵𝑣, 

where 𝑦 = 𝑢 𝑎𝑛𝑑 𝑦 = 𝑣 are particular, distinct solutions of the 

differential equation. 

We now need to find the functions 𝑢 𝑎𝑛𝑑 𝑣 in specific cases. 

In the differential equation 𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0, try as a solution…  

𝑦 = 𝑒𝑚𝑥  where 𝑚 is a constant to be found. 

𝑑𝑦

𝑑𝑥
= 𝑚𝑒𝑚𝑥 

 

𝑑2𝑦

𝑑𝑥2
= 𝑚2𝑒𝑚𝑥 

If 𝑦 = 𝑒𝑚𝑥 is a solution of the differential equation then 

𝑎𝑚2𝑒𝑚𝑥 + 𝑏 𝑚𝑒𝑚𝑥 + 𝑐𝑒𝑚𝑥 = 0 

∴ 𝑎𝑚2 + 𝑏 𝑚 + 𝑐 = 0 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑒𝑚𝑥 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚)  

The 2 values of 𝑚 required are the roots of the quadratic equation 

𝑎𝑚2 + 𝑏 𝑚 + 𝑐 = 0. This equation is called the Auxiliary Quadratic 

Equation and it may have.. 

(i) Real roots     (𝑖𝑓 𝑏2 − 4𝑎𝑐 > 0) 

(ii) Identical roots (𝑖𝑓 𝑏2 − 4𝑎𝑐 = 0) 

(iii) Complex roots (𝑖𝑓 𝑏2 − 4𝑎𝑐 < 0) 
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Example 

Find the general solution of the differential equation 

𝑑2𝑦

𝑑𝑥2
+

𝑑𝑦

𝑑𝑥
− 6𝑦 = 0 

Solution 

 
Generalising:- The general solution of the differential equation 

 𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0, whose auxiliary quadratic equation 

 𝑎𝑚2 + 𝑏 𝑚 + 𝑐 = 0 has real distinct roots 𝛼 𝑎𝑛𝑑 𝛽 is:- 

𝑦 = 𝐴𝑒𝛼𝑥 + 𝐵𝑒  𝛽𝑥 

(where A and B are constants) 

*P3 Book Ex8D 
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Auxiliary Quadratic Equation With Real Coincident Roots 

Example 

Find the general solution of the differential equation 

𝑑2𝑦

𝑑𝑥2
− 4

𝑑𝑦

𝑑𝑥
+ 4𝑦 = 0 

Solution 

 
Generalising:- The general solution of the differential equation 

 𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0, whose auxiliary quadratic equation 

 𝑎𝑚2 + 𝑏 𝑚 + 𝑐 = 0 has equal roots 𝛼 is:- 

𝑦 = (𝐴 + 𝐵𝑥)𝑒𝛼𝑥 

(where A and B are constants) 

*P3 Book Ex8E 
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Auxiliary Quadratic Equation With Pure Imaginary Roots 

Example 

Find the general solution of the differential equation 

𝑑2𝑦

𝑑𝑥2
+ 4𝑦 = 0 

Solution 

 
Result:- For the differential equation 

𝑑2𝑦

𝑑𝑥2
+ 𝑛2𝑦 = 0 

General solution is 𝑦 = 𝐴 cos 𝑛𝑥 + 𝐵 sin 𝑛𝑥 (where A and B are 

constants). 
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Auxiliary Quadratic Equation With Complex Conjugate Roots 

Example 

Find the general solution of the differential equation 

𝑑2𝑦

𝑑𝑥2
− 4

𝑑𝑦

𝑑𝑥
+ 13𝑦 = 0 

Solution 

 
Result:- For the differential equation 

𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0, where the auxiliary quadratic equation 

 𝑎𝑚2 + 𝑏 𝑚 + 𝑐 = 0 has complex conjugate roots 

 𝑝 + 𝑖𝑞 𝑎𝑛𝑑 𝑝 − 𝑖𝑞 (𝑤ℎ𝑒𝑟𝑒 𝑝 𝑎𝑛𝑑 𝑞 ∈ 𝑅) 

the general solution is 𝑦 = 𝑒𝑃𝑥(𝐴 cos 𝑞𝑥 + 𝐵 sin 𝑞𝑥)  

 (where A and B are constants) 

*P3 book Ex8F 
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The Second Order Differential Equation 

𝑎
𝑑2𝑦

𝑑𝑥2
+ 𝑏

𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑓(𝑥) 

To solve this type of differential equation:- 

Method:- 

1. Solve the differential equation 

𝑎
𝑑2𝑦

𝑑𝑥2
+ 𝑏

𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0 

The solution is called the complementary function. 

2. Find a solution of the equation 

𝑎
𝑑2𝑦

𝑑𝑥2
+ 𝑏

𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑓(𝑥) 

𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥)𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 𝑎𝑛𝑦 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒 𝑓𝑜𝑟𝑚𝑠: − 

(i) A constant 𝑘 

(ii) A linear function 𝑝𝑥 + 𝑞 

(iii) An exponential function 𝑘𝑒𝑝𝑥 

(iv) A trig function e.g. 𝑝 sin 𝑥, 𝑞 cos 2𝑥 𝑜𝑟 𝑝𝑠𝑖𝑛 3𝑥 + 𝑞𝑐𝑜𝑠3𝑥 

A solution of the differential equation for any of the forms of 𝑓(𝑥) 

given above can be found by inspection. 

This solution, when found, is called a particular integral of the 

equation. 

 

3. The general solution of the diifferential equation is then  

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 
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Examples on finding the P.I. 

Example 

𝑑2𝑦

𝑑𝑥2
+ 3

𝑑𝑦

𝑑𝑥
+ 2𝑦 = 𝑓(𝑥) 

Find P.I. of this differential equation in the cases where 𝑓(𝑥) = ⋯ 

(a.) 12  (b.) 3𝑥 + 5 (c.) 3𝑒2𝑥   (d.) cos 2𝑥 

Solution 

 

 

(a.) 

(b.) 
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(c.) 

(d.) 
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Example 

Find 𝑦 in terms of 𝑥 for the differential equation 

𝑑2𝑦

𝑑𝑥2
+ 3

𝑑𝑦

𝑑𝑥
+ 2𝑦 = cos 2𝑥

given that  
𝑑𝑦

𝑑𝑥
= 0 𝑎𝑡 𝑥 = 0 𝑎𝑛𝑑 𝑦 = 0 𝑎𝑡 𝑥 = 0. 

Solution 

*P3 book Ex8G Q1-9odds,17,20,23,26-30
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Polar Co-ordinates 

Example 

81



 

 

Example 
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Example 

 

Example 
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Sketching Curves 

 

Example 
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Example 
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Example 
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Example 

 

Area Enclosed By A Curve 
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Example 

 

 

Example 
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Example 
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Tangents To Polar Curves 

 

Example 
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Example 
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