Maclaurins Series

Let f(x) be a function, which throughout a certain domain, including x=0 is

- (a.) Differentiable any number of times ,and
- (b.) The sum of a convergent power series.

Let this series be

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \cdots$$

so $f(0) = a_0$

*differentiating term by term and putting x=0

$$f'(x) = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + \cdots$$

$$so f'(0) = a_1$$

$$f''(x) = 2a_2 + 6a_3x + 12a_4x^2 + 20a_5x^3 + \cdots$$

$$so f''(0) = 2a_2$$

$$or f''(0) = 2! a_2$$

$$f'''(x) = 6a_3 + 24a_4x + 60a_5x^2 + \cdots$$

$$so f'''(0) = 6a_3$$

$$or f'''(0) = 3! a_2$$

so you could write
$$f(x) = f(0) + xf'(0) + \frac{x^2 f''(0)}{2!} + \frac{x^3 f'''(0)}{3!} + \frac{x^4 f''(0)}{4!} + \dots + \frac{x^n f^n(0)}{n!} + \dots$$

This is Maclaurins Series.

Exponential Series

Let $f(x) = e^x$

Logarithmic Series

Let $f(x) = \ln(1+x)$

Example

Expand $\cos x$ in ascending powers of x.

Solution

***P3 Book Exercise 2D

(next bit is not needed. Just to show)

Use the ratio test to show that

Challenge

The **ratio test** is a sufficient condition for the convergence of an infinite series. It says that a series $\sum_{r=1}^{\infty} a_r$ converges if $\lim_{r \to \infty} \left| \frac{a_{r+1}}{a_r} \right| < 1$, and diverges if $\lim_{r \to \infty} \left| \frac{a_{r+1}}{a_r} \right| > 1$.

a the Maclaurin series expansion of e^x converges for all $x \in \mathbb{R}$

Problem-solving

 $|f|\lim_{r\to\infty} \left|\frac{a_{r+1}}{a_r}\right| = 1 \text{ or does not}$ exist then the ratio test is inconclusive.

$$e^{x} = \sum_{r=1}^{\infty} \frac{x^{r}}{r!}$$
$$= \lim_{r \to \infty} \left| \frac{\frac{x^{r+1}}{(r+1)!}}{\frac{x^{r}}{r!}} \right| = \lim_{r \to \infty} \left| \frac{x}{(r+1)} \right| \text{ which is <1 for all x.}$$

Binomial Series

Consider $f(x) = (1 + x)^n$ for $n \in \mathbb{R}$ $f(x) = (1 + x)^n \quad \text{so } f(0) = 1$ $f'(x) = n(1 + x)^{n-1} \quad \text{so } f'(0) = n$ $f''(x) = n(n-1)(1 + x)^{n-2} \quad \text{so } f''(0) = n(n-1)$ $f'''(x) = n(n-1)(n-2)(1 + x)^{n-3} \quad \text{so } f'''(0) = n(n-1)(n-2)$

$$f^{r}(x) = n(n-1)(n-2)..(n-r+1)(1+x)^{r}$$
 so $f^{r}(0) = n(n-1)(n-2)..(n-r+1)$

Maclaurins gives:-

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)x^{2}}{2!} + \frac{n(n-1)(n-2)x^{3}}{3!} + \dots + \frac{n(n-1)(n-2)\dots(n-r+1)x^{r}}{r!}$$

Which is the Binomial Series for any $n \in R$ and is convergent, provided |x| < 1.

If $n \in Z^+$, the series terminates and reduces to the Binomial Theorem.

<u>Note</u> Define $\binom{n}{r}$ to be

$$\binom{n}{r} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}$$

Example

Expand $(1 - 3x)^{\frac{-2}{3}}$ up to terms including x^3 . Solution

<u>Example</u>

Expand $(1 - 3x)^{\frac{1}{5}}$ inascending powers of x up to the term x^3 . Take $x = \frac{1}{32}$ to find an approprimation for $29^{\frac{1}{5}}$, giving your answer correct to 5d.p.

Solution

<u>Example</u>

$$f(x) = \frac{x}{(3 - 2x)(2 - x)}$$

- (a.) Express f(x) in partial fractions
- (b.) Expand f(x) up to terms including x^3 .
- (c.) State the set of values of x for which the series is valid.

<u>Solution</u>

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$$

So if you take terms in x^3 and higher powers of x to be negligible, then

 $\sin x \approx x$ and $\cos x \approx 1 - \frac{x^2}{2}$ where x is small.

Also

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots$$

So for small x, $\tan x \approx x$.

Example

Find a quadratic polynomial approximation for $\frac{\sin 2x}{1+x}$, give that x is small.

<u>Solution</u>

Example

Given that x is small, show that
$$\frac{3\sin x}{2+\cos x} \approx \chi$$
.

Solution

<u>Example</u>

Show that
$$\lim_{x \to 0} \frac{1 - \cos 4x + x \sin 3x}{x^2} = 11$$

Solution