Summation of Finite Series Using The Method Of Differences

$$\sum_{r=1}^{n} r = 1 + 2 + 3 + \dots + n \ (frontwards)$$

$$\sum_{r=1}^{n} r = n + (n-1) + (n-2) \dots 3 + 2 + 1 \text{ (backwards)}$$

Adding:-

$$2\sum_{r=1}^{n} r = (n+1) + (n+1) + (n+1) + \dots + (n+1) + (n+1) + (n+1)$$

(n terms)

$$2\sum_{r=1}^{n}r=n(n+1)$$

Result 1:-

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$$

Note:- Here is another way you could sum the series $1 + 2 + 3 + \cdots + n$.

Consider the identity

$$2r \equiv r(r+1) - (r-1)r$$

iking successive va	lues 1,2,3,,n for r,	, we get:-		

This method is called summing a series by the method of difference.

Genereally if it is possible to find a function f® such that the rth term u_r of a series can be expressed as

 $u_r = f(r+1) - f(r)$, then it is easy to find

$$\sum_{r=1}^{n} u_r$$

We have for r=1,2,3,...,n

$$u_1 = f(2) - f(1)$$

$$u_2 = f(3) - f(2)$$

$$u_3 = f(4) - f(3)$$

..

..

$$u_n = f(n+1) - f(n)$$

Adding:-

$$\sum_{r=1}^{n} u_r = f(n+1) - f(1)$$

because all the other terms on R.H.S. cancel out.

Example 1:-Find

$$\sum_{r=1}^{n} r^2$$

Consider the identity

$$24r^2 + 2 \equiv (2r+1)^3 - (2r-1)^3$$

And take r=1,2,3,...,n.

Solution

Result 2:-		
	$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$	
Example 2:-Find		
	$\sum_{r=1}^{n} r^3$	
Consider the identity	$4r^3 \equiv r^2(r+1)^2 - (r-1)^2r^2$	
And take r=1,2,3,,n.		
<u>Solution</u>		
<u>Solution</u>		
Solution		
<u>Solution</u>		

Result 3:-

$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$

Note:- Since

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$$

Then

$$\sum_{r=1}^{n} r^3 = \left(\sum_{r=1}^{n} r\right)^2$$

Example 3:- Find

$$\sum_{r=1}^{n} r(r+1)$$

	$\sum_{r=1} r(r+1)$
Consider the identity	$3r(r+1) \equiv r(r+1)(r+2) - (r-1)(r)(r+1)$
And take r=1,2,3,,n.	Sr(r+1) = r(r+1)(r+2) - (r-1)(r)(r+1)
Solution	

Results for the sigma notation:-

<u>1.</u>

$$\sum_{r=1}^{n} af(r) = a \sum_{r=1}^{n} f(r)$$

Proof:-

$$\sum_{r=1}^{n} af(r) = af(1) + af(2) + af(3) + \dots + af(n)$$

$$\sum_{r=1}^{n} af(r) = a[f(1) + f(2) + f(3) + \dots + f(n)]$$

$$\therefore \sum_{r=1}^{n} af(r) = a \sum_{r=1}^{n} f(r)$$

2.

$$\sum_{r=1}^{n} f(r) + g(r) = \sum_{r=1}^{n} f(r) + \sum_{r=1}^{n} g(r)$$

Proof:-

$$\sum_{r=1}^{n} f(r) + g(r) = f(1) + g(1) + f(2) + g(2) + \dots + f(n) + g(n)$$

$$\sum_{r=1}^{n} f(r) + g(r) = [f(1) + f(2) + \dots + f(n)] + [g(1) + g(2) + \dots + g(n)]$$

$$\sum_{r=1}^{n} f(r) + g(r) = \sum_{r=1}^{n} f(r) + \sum_{r=1}^{n} g(r)$$

^{***}Questions: P3 book Page 15 Exercise 2A Q1,3,4,7,9,10***

-			. .
10	ലാവ	nıng	Series
1	CSCO	PILIS	JULIUS

Example:- Find the value of

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$

	$\sum_{n=1}^{\infty} (2n-1)(2n+1)$
Solution	

The above is an example of a telescoping series, since the terms of S_n , other than the first and last, cancel out in pairs.

Summation of Finite Series Using Standard Results

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$$

$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$

Example:- Find

$$(a.) \sum_{r=7}^{20} r^2$$

$$(b.) \sum_{r=12}^{25} r^3$$

$(b.)\sum_{r=12}r^3$	
Solution	

Exan	าท	او٠-	Sh	OW
LAGII	ı	ı C	211	0

$$\sum_{r=1}^{n} r(r+1) = \frac{1}{3}n(n+1)(n+2)$$

Solution		

Example:- Find the following in terms of n.		
Solution	$\sum_{r=1}^{n} 6r^2 + 2^r$	

^{***}Questions P3 book page 18 Ex2B Q1-3,5,-7,9-11,13,14,17,19