Polar Co-ordinates

Polar coordinates are an alternative way of describing the position of a point P in two-dimensional space. You need two measurements: firstly, the distance the point is from the **pole** (usually the origin O), r, and secondly, the angle measured anticlockwise from the **initial line** (usually the positive x-axis), θ . Polar coordinates are written as (r, θ) .

The coordinates of P can be written in either Cartesian form as (x, y) or in polar form as (r, θ) .

You can convert between Cartesian coordinates and polar coordinates using right-angled triangle trigonometry.

From the diagram above you can see that:

$$r\cos\theta = x$$

$$r\sin\theta = v$$

$$r^2 = x^2 + y^2$$

$$\theta = \arctan\left(\frac{y}{x}\right)$$

Watch out

Always draw a sketch diagram

to check in which quadrant the point lies, and
always measure the polar angle from the positive
x-axis.

Example

Find polar coordinates of the points with the following Cartesian coordinates.

a (3, 4)

b (5, -12)

c $(-\sqrt{3}, -1)$

Example

Find Cartesian equations of the following curves.

$$a r = 5$$

b
$$r = 2 + \cos 2\theta$$

b
$$r = 2 + \cos 2\theta$$
 c $r^2 = \sin 2\theta$, $0 < \theta \le \frac{\pi}{2}$

$$0 < \theta \le \frac{\pi}{2}$$

Example

Find polar equations for the following:

a
$$y^2 = 4x$$

b
$$x^2 - y^2 = 5$$
 c $y\sqrt{3} = x + 4$

c
$$v\sqrt{3} = x + 4$$

Sketching Curves

You can sketch curves given in polar form by learning the shapes of some standard curves.

- r = a is a circle with centre O and radius a.
- $m{\theta} = \alpha$ is a half-line through O and making an angle α with the initial line.
- $r = a\theta$ is a spiral starting at O.

Example

Sketch the following curves.

a
$$r = 5$$

$$\mathbf{b} \ \theta = \frac{3\pi}{4}$$

$$\mathbf{c} r = a\theta$$

where a is a positive constant.

<u>Example</u>

Sketch the following curves.

	$\mathbf{a} r = a(1 + \cos \theta)$	$\mathbf{b} \ \ r = a \sin 3\theta$	$\mathbf{c} r^2 = a^2 \cos 2\theta$
Į	1		

Curves with equations of the form $r=a(p+q\cos\theta)$ are defined for all values of θ if $p\geqslant q$. An example of this, when p=q, was the cardioid seen in Example 6a. These curves fall into two types, those that are 'egg' shaped (i.e. a convex curve) and those with a 'dimple' (i.e. the curve is concave at $\theta=\pi$). The conditions for each type are given below:

Links You can prove these conditions by considering the number of tangents to the curve that are perpendicular to the initial line.

→ Example 14

Example

Sketch the following curves.

$$\mathbf{a} \quad r = a(5 + 2\cos\theta)$$

b
$$r = a(3 + 2\cos\theta)$$

You may also need to find a polar curve to represent a locus of points on an Argand diagram.

Links If the pole is taken as the origin, and the initial line is taken as the positive real axis, then the point (r, θ) will represent the complex number $re^{i\theta}$ \leftarrow Section 1.1

Example

- a Show on an Argand diagram the locus of points given by the values of z satisfying |z 3 4i| = 5
- **b** Show that this locus of points can be represented by the polar curve $r = 6\cos\theta + 8\sin\theta$.

Area Enclosed By A Curve

You can find areas enclosed by a polar curve using integration.

■ The area of a sector bounded by a polar curve and the half-lines $\theta = \alpha$ and $\theta = \beta$, where θ is in radians, is given by the formula

Area =
$$\frac{1}{2} \int_{\Omega}^{\beta} r^2 d\theta$$

Example

Find the area enclosed by the cardioid with equation $r = a(1 + \cos \theta)$.
vomale
<u>xample</u>
Find the area of one loop of the curve with polar equation $r = a \sin 4\theta$.
Watch out $r = \sin n\theta$ has n loops and so a simple way of finding the area of one loop would appear to be

to find $\frac{1}{2}\int_0^{2\pi} r^2 \,\mathrm{d}\theta$ and divide by n. This would give $\frac{a^2\pi}{8}$. The reason why this is not the correct answer is because when you take r^2 in the integral you are also including the n loops given by r < 0. You need to choose your limits carefully so that $r \ge 0$ for all values within the range of the integral.

<u>Example</u>

a On the same diagram, sketch the curves with equations $r = 2 + \cos \theta$ and $r = 5 \cos \theta$. b Find the polar coordinates of the points of intersection of these two curves.				
c Find the exact area of the region which lies within both curves.				

Tangents To Polar Curves

If you are given a curve $r=f(\theta)$ in polar form, you can write it as a parametric curve in Cartesian form, using θ as the parameter:

$$x = r \cos \theta = f(\theta) \cos \theta$$
$$y = r \sin \theta = f(\theta) \sin \theta$$

By differentiating parametrically, you can find the gradient of the curve at any point:

You need to be able to find tangents to a polar curve that are **parallel** or **perpendicular** to the initial line.

- To find a tangent parallel to the initial line set $\frac{dy}{d\theta} = 0$.
- To find a tangent perpendicular to the initial line set $\frac{dx}{d\theta}$ = 0.

Example

Find the coordinates of the points on $r = a(1 + \cos \theta)$ where the tangents are parallel to the initial line $\theta = 0$.

<u>Example</u>	
Find the equations and the points of contact that are:	of the tangents to the curve $r = a \sin 2\theta$, $0 \le \theta \le \frac{\pi}{2}$
a parallel to the initial line	b perpendicular to the initial line.
Give answers to three significant figures when	re appropriate.

Summary of key points

- **1** For a point P with polar coordinates (r, θ) and Cartesian coordinates (x, y),
 - $r\cos\theta = x$ and $r\sin\theta = y$
 - $r^2 = x^2 + y^2$, $\theta = \arctan\left(\frac{y}{x}\right)$

Care must be taken to ensure that θ is in the correct quadrant.

- 2 r = a is a circle with centre O and radius a.
 - $\theta = \alpha$ is a half-line through O and making an angle α with the initial line.
 - $r = a\theta$ is a spiral starting at O.
- **3** The **area of a sector** bounded by a polar curve and the half-lines $\theta = \alpha$ and $\theta = \beta$, where θ is in radians, is given by the formula

Area =
$$\frac{1}{2} \int_{\Omega}^{\beta} r^2 d\theta$$

- To find a tangent parallel to the initial line set $\frac{dy}{d\theta} = 0$.
 - To find a tangent perpendicular to the initial line set $\frac{dx}{d\theta} = 0$.