Further Maths AS1 Question Booklet

Topic 1 Matrices	Page 2
Topic 2 Roots of Polynomials	Page 13
Topic 3 Vectors	Page 21
Topic 4 Complex Numbers 1	Page 42

Further Maths AS1 Matrices

Exercise 6A Questions 4,6-10 4. Find the values of x and y in each of the following matrix equations. (a) $\begin{pmatrix} 3 & -5 \\ 2 & x \end{pmatrix} + \begin{pmatrix} 1 & y \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 5 & -2 \end{pmatrix}$ (b) $\begin{pmatrix} 2 \\ y \end{pmatrix} - \begin{pmatrix} x \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ -6 \end{pmatrix}$ (c) $2\binom{3}{y} + \binom{x}{-1} = \binom{8}{7}$ (d) $\binom{3}{-1} + x\binom{-2}{y} = \binom{-5}{11}$ (e) $\binom{3}{5} \frac{x}{4}\binom{1}{2} \frac{y}{3} = \binom{7}{13} \frac{3}{7}$ (f) $\binom{2}{x} \frac{1}{3}\binom{3}{-4} \frac{2}{3} = \binom{2}{3} \frac{7}{y}$ (g) $\begin{pmatrix} 2 & x \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ y & -3 \end{pmatrix} = \begin{pmatrix} 0 & 5 \\ 2 & 6 \end{pmatrix}$ (h) $\begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$ (i) $\begin{pmatrix} -1 & 3 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 9 \\ 10 \end{pmatrix}$ (j) $\begin{pmatrix} 2 & 4 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$ 5. By letting $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} w & x \\ y & z \end{pmatrix}$ prove that $(\mathbf{AB})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}}$ and that $(AB)^{-1} = B^{-1}$ 6. If $\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 6 & 1 \\ 11 & 3 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} -4 & 3 \\ -5 & 2 \end{pmatrix}$ and $\mathbf{D} = \begin{pmatrix} 4 & 7 \\ -2 & 7 \end{pmatrix}$ find the 2 \times 2 matrices X, Y and Z given that AX = B, BY = C and CZ = D.7. If $A = \begin{pmatrix} 3 & 2 \\ -4 & 1 \end{pmatrix}$ find the values of m and n given that $A^2 = mA + nI$ where I is the identity matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. 8. Find the possible values x can take given that $A = \begin{pmatrix} x^2 & 3 \\ 1 & 3x \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 & 6 \\ 2 & x \end{pmatrix}$ and $\mathbf{AB} = \mathbf{BA}$. Solve the following simultaneous equations by matrix methods. ·−ν=5 (b) x - 3v = 3(a) x + 3y = 1

$$3x + 2y = 5 \qquad (b) \quad x = 3y = 3 \qquad (c) \quad x + 3y = 1 3x + 2y = 5 \qquad 5x - 9y = 11 \qquad 2x - 4y = 1 10. If A = \begin{pmatrix} -3 & 2 & -1 \\ 2 & -1 & 3 \\ -1 & 1 & 1 \end{pmatrix} and B = \begin{pmatrix} -4 & -3 & 5 \\ -5 & -4 & 7 \\ 1 & 1 & -1 \end{pmatrix} find AB.$$

Hence find the values of x, y and z satisfying the three equations -4x - 3y + 5z = 3 -5x - 4y + 7z = 4x + y - z = 0.

Answers

4. (a) -4, 11 (b) -2, -3 (c) 2, 4 (d) 4, 3 (e) 2, -1 (f) 5, 19 (g) -1, 4 (h) 2, -1 (i) -3, 2 (j) -3, 1½ 6. $X = \begin{pmatrix} 1 & -1 \\ 3 & 4 \end{pmatrix}$ $Y = \begin{pmatrix} -1 & 1 \\ 2 & -3 \end{pmatrix}$ $Z = \begin{pmatrix} 2 & -1 \\ 4 & 1 \end{pmatrix}$ 7. 4, -11 8. -½ or 3 9. (a) x = 3, y = -2 (b) $x = 1, y = -\frac{2}{3}$ (c) $x = 1\frac{1}{2}, y = \frac{1}{2}$ 10. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, -1, 2, 1.

Exercise 6B Questions 1,3,5-10,13

1. The points A(3, 2), B(-1, 4), C(2, 5) and D(1, -1) are transformed to

A', B', C', and D' by the transformation matrix $\begin{pmatrix} 3 & 0 \\ 1 & -3 \end{pmatrix}$. Find the

coordinates of A', B', C', and D'.

 Under a certain transformation the image (x', y') of a point (x, y) is obtained by the rule:

$$\begin{pmatrix} x'\\ y' \end{pmatrix} = \begin{pmatrix} 1 & 2\\ -1 & 3 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}$$

Find (a) the image of the point (2, 1), (b) the image of the point (-1, 3), (c) the point with an image of (1, -6), (d) the point with an image of (-1, 11).
Find the 2 × 2 transformation matrix that will map the point (-2, 3) onto (-7, 6) and (1, -1) onto (3, -1).

Find the image of the point (-1, 3) under this linear transformation and the coordinates of the point that has an image of (6, -2).

- 5. Find the 2 × 2 transformation matrices P, Q, R and S given that
 - (a) matrix P represents a reflection in the y-axis,
 - (b) matrix Q represents a 90° clockwise rotation about the origin,
 - (c) matrix **R** represents a reflection in the line y = x,
 - (d) matrix S transforms the point (2, -3) to (4, 14) and the point (1, 3) to (11, -2).

Use your answers to (a), (b) and (c) to show that a reflection in the y-axis followed by a 90° clockwise rotation about the origin is equivalent to a reflection in the line y = x.

- The linear transformations shown below are shears transforming OABC to OA'B'C'. For each transformation, write down
 - (i) the associated 2 × 2 matrix,
 - (ii) the equations of the transformation in the form x' = ax + byy' = cx + dy.

7. A 1st shape is transformed to a 2nd shape by the transformation matrix

 $\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$ and a 3rd shape is obtained from the 2nd shape using the

transformation matrix $\begin{pmatrix} -1 & 5 \\ -1 & 2 \end{pmatrix}$. Find the single matrix that would transform the 1st shape to the 3rd shape direct. If the 1st shape has an area of 5 sq. units, find the areas of the 2nd and 3rd shapes.

- 8. Find the matrices corresponding to the following linear transformations.
 - (a) 180° rotation about the origin, (b) enlargement scale factor 3, centre (0, 0),
 - (c) reflection in the line y = -x, (d) stretch (×2) parallel to the y-axis, x-axis fixed,
 - (e) shear with x-axis fixed and $(0, 1) \rightarrow (1, 1)$, (f) shear with y = x fixed and $(1, 0) \rightarrow (0, -1)$,
 - (g) stretch (\times 3) perpendicular to y = -x and with y = -x fixed,
 - (h) shear with y = x fixed and $(0, 2) \rightarrow (4, 6)$,
 - (i) shear with y = 2x fixed and $(0, 4) \rightarrow (-2, 0)$.

Give a geometrical description of the effect of each of the following transformation matrices.

(a)
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 (b) $\begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$ (c) $\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ (e) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
(f) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (g) $\begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$ (h) $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ (i) $\begin{pmatrix} 1 & 2 \\ 4 & 8 \end{pmatrix}$ (j) $\begin{pmatrix} -2 & 3 \\ -3 & 4 \end{pmatrix}$

10. Prove that the transformation matrix $\begin{pmatrix} 3 & 6 \\ -2 & -4 \end{pmatrix}$ maps all points of the

x-y plane onto a straight line and find the equation of that line.

13. A certain transformation maps a point A(x, y) onto its image A'(x', y') according to the rule:

$$\binom{x'}{y'} = \begin{pmatrix} 3 & 3\\ -2 & -1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{pmatrix} -4\\ 2 \end{pmatrix}$$

Find (a) the image of the point (2, -1),

- (b) the point with an image of (-7, 6),
- (c) the coordinates of the point that is mapped onto itself by the transformation.

Answers

1. (9, -3), (-3, -13), (6, -13), (3, 4) 2. (a) (4, 1) (b) (5, 10) (c) (3, -1) (d) (-5, 2)3. $\begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$, (-5, 9), (2, -2) 4. (a) (5, -3), (15, -9), (13, -7), (3, -1) (b) 8 sq. units (c) $\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 3 & 5 \end{pmatrix}$ **5.** $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 5 & 2 \\ 4 & -2 \end{pmatrix}$ **6.** (a) (i) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ (ii) $\begin{pmatrix} x' = x + 2y \\ y' = y \end{pmatrix}$ (b) (i) $\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ (ii) $\begin{pmatrix} x' = x \\ y' = 3x + y \end{pmatrix}$ 7. $\binom{18}{6} \quad \frac{14}{5}$. 10 sq. units, 30 sq. units 8. (a) $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ (b) $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ (e) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (f) $\begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$ (g) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ (h) $\begin{pmatrix} -1 & 2 \\ -2 & 3 \end{pmatrix}$ (i) $\begin{pmatrix} 2 & -\frac{1}{2} \\ 2 & 0 \end{pmatrix}$ 9. (a) reflection in y = x(b) enlargement (× 5) centre (0, 0) (c) stretch (× 3) parallel to x-axis, y-axis fixed (d) mapping onto (0, 0) (e) mapping onto x-axis (f) mapping onto y = x(g) enlargement (\times 3) centre (0, 0) and reflection in y = x(h) shear with y-axis fixed and $(1, 0) \rightarrow (1, 2)$ (i) mapping onto y = 4x(j) shear with y = x fixed and $(1, 0) \rightarrow (-2, -3)$ **10.** 2x + 3y = 0 **12.** (a) $\binom{x'}{y'} = \binom{-1}{0} \binom{x}{y} + \binom{2}{3}$ (b) $\frac{x'}{y'} = \frac{-x}{y+3}$ 13. (a) (-1, -1) (b) (-3, 2) (c) (-1, 2)

Questions 1,3,4,5,6,8,10,13,14,17 Exercise 6C

1. Find any invariant points of the transformations given by

(a)
$$x' = 3y + 2$$

 $y' = 2x - y + 4$
(b) $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -3 \\ 5 \end{pmatrix}$
(c) $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 4 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 5 \\ -3 \end{pmatrix}$

2. Two transformations P and T transform the point (x, y) to its image (x', y') according to the following rules:

$$\mathbf{P}\begin{cases} x' = 3x + y \\ y' = x - 1 \end{cases} \mathbf{T}\begin{cases} x' = 2x - y - y \\ y' = 1 - x \end{cases}$$

Express the transformations P, T, PT and TP in the form

$$\begin{pmatrix} \mathbf{x}'\\ \mathbf{y}' \end{pmatrix} = \begin{pmatrix} \mathbf{*} & \mathbf{*}\\ \mathbf{*} & \mathbf{*} \end{pmatrix} \begin{pmatrix} \mathbf{x}\\ \mathbf{y} \end{pmatrix} + \begin{pmatrix} \mathbf{*}\\ \mathbf{*} \end{pmatrix}$$

Find any invariant points under the transformation (a) P, (b) T, (c) PT, (d) TP.

3. Find the equations of the image lines formed when the lines y = 2x + 1

and 3y = 2x - 1 are transformed using the matrix $\begin{pmatrix} 1 & 3 \\ -1 & 3 \end{pmatrix}$.

4. Find the equation of the image line produced by translating all of the

points on the line y = 3x - 1 by the vector $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

5. Find vector equations of the image lines formed when the lines

$$\mathbf{r} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 and $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ are transformed using the matrix $\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$

- 6. Find the 2 \times 2 transformation matrix T that maps (3, -1) onto (13, -7) and (-1, 3) onto (1, 5). Find the equations of the lines obtained when T is applied to y = x, y + 2x = 3 and y = 2x + 3.
- 7. The transformation matrix $\begin{pmatrix} 3 & -2 \\ 3 & -1 \end{pmatrix}$ transforms a line L to the line

y = 2x + 3. Find the equation of L.

- 8. Find the vector equation of the line which, when transformed by the matrix $\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$, has an image line $\mathbf{r} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.
- 9. A transformation T assigns to any point (x, y) an image (x', y')

according to the rule
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -2 \\ -4 \end{pmatrix}$$

- (a) Find the equation of the image lines obtained when all points on the lines y = 2x and y = x - 3 undergo the transformation T.
- (b) Prove that the line y = 3x + 1 maps onto itself under the transformation T.

10. Prove that the transformation matrix $\begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix}$ maps all points on the line y = 3x onto themselves.

11. Prove that all lines of the form y = x + a are mapped onto themselves

under the transformation given by the matrix $\begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}$.

12. Prove that the lines y = x + 5 and y + 3x = 1 are mapped onto themselves under the transformation that maps (x, y) onto (x', y')

according to the relationship $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 6 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ -9 \end{pmatrix}$.

13. Show that the transformation with matrix $\begin{pmatrix} 1 & 3 \\ -1 & -3 \end{pmatrix}$ maps all points

on the line $\mathbf{r} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ onto a single point and find the position vector of this point.

14. Show that the transformation with matrix $\begin{pmatrix} -4 & 2 \\ 6 & -3 \end{pmatrix}$ maps all points on the line $\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} + \lambda(\mathbf{i} + 2\mathbf{j})$ onto a single point and find the position

vector of this point.
15. Prove that all points on the line y + 3x + 2 = 0 are mapped onto a single point under the transformation that maps (x, y) onto (x', y')

according to the relationship $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and find the coordinates of this single point.

coordinates of this single point.

16. Find the equations of any straight lines that pass through the origin and that map onto themselves under the transformation defined by the matrix

(a)
$$\begin{pmatrix} -5 & 2 \\ -4 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} -3 & 3 \\ 1 & -5 \end{pmatrix}$ (c) $\begin{pmatrix} a & 1 \\ 8 & a \end{pmatrix}$

17. Find the 2 × 2 matrix that maps (1, 2) onto (-3, 0) and (-2, -3) onto (2, -1). For the transformation defined by this matrix, find the equations of two invariant straight lines passing through the origin. Which of these two lines is a set of invariant points under the transformation?

<u>Answers</u>

- 1. Find the matrices which represent the following linear transformations.
 - (a) a rotation of 30° anticlockwise about the origin,
 - (b) a rotation of 45° anticlockwise about the origin,
 - (c) a rotation of 120° anticlockwise about the origin.
- 2. Find the matrices which represent the following linear transformations,
 - (a) a reflection in the line $y = \sqrt{3x}$,
 - (b) a reflection in the line $\sqrt{3y} = x$,
 - (c) a reflection in the line y = 2x.
- Give a geometrical description of the transformations corresponding to the following matrices

(a)
$$\begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}$$
 (b) $\begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{pmatrix}$ (c) $\begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}$

4. Find the matrix equations representing each of the following transformations,

- (a) a rotation of 90° anticlockwise about the point (-1, 4),
- (b) a rotation of 180° about the point (3, -1),
- (c) an enlargement, scale factor 3, centre (2, -1),
- (d) a reflection in the line y = x + 5,
- (e) a glide reflection in the line y = x + 5 with the point (0, 5) mapped onto (3, 8).

<u>Answers</u>

1. (a)
$$\begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$
 (b) $\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ (c) $\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$
2. (a) $\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$ (b) $\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$ (c) $\begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}$

3. (a) rotation of 53·1° anticlockwise about origin (b) reflection in 2y = x(c) rotation of 53·1° anticlockwise about origin and enlargement (× 5), centre the origin

4. (a)
$$\binom{x'}{y'} = \binom{0 & -1}{1 & 0}\binom{x}{y} + \binom{3}{5}$$

(c) $\binom{x'}{y'} = \binom{3 & 0}{0 & 3}\binom{x}{y} + \binom{-4}{2}$
(e) $\binom{x'}{y'} = \binom{0 & 1}{1 & 0}\binom{x}{y} + \binom{-2}{8}$

(b)
$$\begin{pmatrix} x'\\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{pmatrix} 6\\ -2 \end{pmatrix}$$

(d) $\begin{pmatrix} x'\\ y' \end{pmatrix} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{pmatrix} -5\\ 5 \end{pmatrix}$

P4 Book Ex4B Questions 3, 4alt

3 Evaluate:			
(a) $\begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix}$	(b) $\begin{vmatrix} 1 & -1 \\ 2 & -4 \end{vmatrix}$	4 Find the inverse of: (a) $\begin{pmatrix} 2 & 5 \\ -1 & -1 \end{pmatrix}$	(b) $\begin{pmatrix} -3 & 2 \\ -3 & -2 \end{pmatrix}$
	(d) $\begin{vmatrix} 0 & -2 \\ 1 & -4 \end{vmatrix}$	(-1 4)	
(e) $\begin{vmatrix} 1 & 2 & -3 \\ 1 & 1 & 0 \\ -1 & 4 & -6 \end{vmatrix}$	$(f) \begin{vmatrix} -2 & 7 & 3 \\ 1 & 2 & 4 \\ -1 & 2 & 0 \end{vmatrix}$	$\int (e) \left(\begin{array}{c} -3 & 7 \\ 9 & 22 \end{array} \right)$	$(C) \begin{pmatrix} -3 & 2 \end{pmatrix} \\ (-3 & 2) \begin{pmatrix} 2 & 1 & -5 \\ 1 & 0 & -2 \\ 0 & 0 & 3 \end{pmatrix}$
$ \begin{array}{c cccc} 2 & -3 & 6 \\ -2 & 4 & 5 \\ -1 & 0 & -5 \end{array} $	(h) $\begin{vmatrix} 1 & 2 & -3 \\ 2 & 2 & -4 \\ -4 & 2 & 1 \end{vmatrix}$	(g) $\begin{pmatrix} -1 & 2 & 1 \\ 0 & 0 & -2 \\ 1 & -5 & 4 \end{pmatrix}$	(h) $\begin{pmatrix} -1 & 2 & 3\\ 1 & 1 & 2\\ 5 & -1 & 4 \end{pmatrix}$
	(j) $\begin{vmatrix} 3 & 4 & 1 \\ 4 & 1 & 3 \\ 2 & 5 & 2 \end{vmatrix}$	$\sqrt{(i)} \begin{pmatrix} -2 & 3 & -4 \\ 1 & 2 & -3 \\ -3 & 0 & -2 \end{pmatrix}$	(j) $\begin{pmatrix} 2 & -1 & 2 \\ 1 & -1 & 1 \\ 2 & 1 & -3 \end{pmatrix}$
(k) $\begin{vmatrix} 1 & -1 & 3 \\ 2 & -2 & 4 \\ 3 & -3 & 5 \end{vmatrix}$	$ \textcircled{1} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ (k) \begin{pmatrix} 3 & 2 & -6 \\ 1 & 1 & -2 \\ 2 & 2 & -1 \end{pmatrix} $	$\sqrt{(1)} \begin{pmatrix} 4 & -5 & 2 \\ 0 & 1 & -7 \\ 1 & 1 & -2 \end{pmatrix}$
(m) $\begin{vmatrix} 0 & -1 & 2 \\ 1 & 0 & -2 \\ -2 & 2 & 0 \end{vmatrix}$	(n) $\begin{vmatrix} 3 & 0 & 2 \\ 0 & -1 & 4 \\ 1 & 1 & -2 \end{vmatrix}$	$(m) \begin{pmatrix} 3 & 2 & -3 \\ 1 & 1 & -4 \\ 2 & 2 & -6 \end{pmatrix}$	(n) $\begin{pmatrix} -2 & 1 & -2 \\ 4 & 3 & 1 \\ 0 & 1 & -6 \end{pmatrix}$
$\begin{array}{c cccc} 2 & 0 & 1 \\ \hline 0 & -1 & 2 & 3 \\ 1 & 0 & 2 \end{array}$	(p) $\begin{vmatrix} 5 & 1 & 3 \\ -2 & 0 & 1 \\ 1 & 1 & -2 \end{vmatrix}$	$ \sqrt{(6)} \begin{pmatrix} 2 & 1 & -3 \\ 1 & -1 & 2 \\ 3 & 2 & 1 \end{pmatrix} $	$ \forall (p) \begin{pmatrix} 2 & 2 & 1 \\ 4 & 1 & 5 \\ -1 & 1 & 7 \end{pmatrix} $
Answers			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(c) -5 (d) 2(g) 29(h) 2(k) 0(l) 0(o) 6(p) -14		
4 (a) $\frac{1}{13}\begin{pmatrix} 4 & -5\\ 1 & 2 \end{pmatrix}$ (b) $-\frac{1}{19}\begin{pmatrix} 7 & -2\\ 1 & -3 \end{pmatrix}$	(h) $-\frac{1}{12}\begin{pmatrix} 6\\ 6\\ -6 \end{pmatrix}$	$\begin{pmatrix} -11 & 1 \\ -19 & 5 \\ 9 & -3 \end{pmatrix}$	
(c) $-\frac{1}{5}\begin{pmatrix} -4 & 3\\ -1 & 2 \end{pmatrix}$	(i) $\frac{1}{17}\begin{pmatrix} -4 \\ 11 \\ 6 \\ -9 \end{pmatrix}$	$\begin{pmatrix} 6 & -1 \\ 8 & -10 \\ 9 & -7 \end{pmatrix}$	
(d) $\frac{1}{3} \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix}$ (e) $-\frac{1}{129} \begin{pmatrix} 22 & -7 \\ -9 & -3 \end{pmatrix}$	(j) $\frac{1}{5}\begin{pmatrix} 2 & -1\\ 5 & -10\\ 3 & -4 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$	
(f) $-\frac{1}{3}\begin{pmatrix} 0 & -3 & -2\\ -3 & 6 & -1\\ 0 & 0 & -1 \end{pmatrix}$	(k) $\frac{1}{3} \begin{pmatrix} 3 & -1 \\ -3 & \\ 0 & - \end{pmatrix}$	$\begin{pmatrix} 0 & 2 \\ 9 & 0 \\ -2 & 1 \end{pmatrix}$	
(g) $\frac{1}{6} \begin{pmatrix} -10 & -13 & -4 \\ -2 & -5 & -2 \\ 0 & -3 & 0 \end{pmatrix}$	(1) $\frac{1}{53}\begin{pmatrix} 5 & -7 & -7 \\ -7 & -7 & -1 \\ -1 & -7 & -7 \end{pmatrix}$		

P4 Book Ex4C Questions 1,4,5,8

(1) Given that

$$T: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ x-y \end{pmatrix}$$
$$U: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ 2x+y \end{pmatrix}$$

find the matrix that represents (a) T (b) U (c) TU (d) UT. Given that

$T: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} y \\ x \end{pmatrix}$ $U: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 2x \\ y \end{pmatrix}$

find the matrix that represents (a) T^{-1} (b) U^{-1} (c) $(UT)^{-1}$.

5 Given that

$$T: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 2x+z \\ y \\ -y+z \end{pmatrix}$$
$$U: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} -x+2y-3z \\ 2x-y+4z \\ 3x+4y+z \end{pmatrix}$$

find the matrix that represents (a) T (b) U (c) TU (d) UT.

8 Given that

$$T: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x - y + 3z \\ 2x + y + 4z \\ y + z \end{pmatrix}$$
$$U: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x + 3y - 2z \\ -2x - 9y + 5z \\ x + 10y + 4z \end{pmatrix}$$

find the matrix that represents (a) T^{-1} (b) U^{-1} (c) $(TU)^{-1}$ (d) $(UT)^{-1}$.

9 Given that

ven that

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 4 & 1 & 7 \\ -2 & 3 & 6 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} -2 & 1 & 3 \\ 4 & -9 & 5 \\ 1 & 1 & -2 \end{pmatrix}$$

find (a) \mathbf{A}^{T} (b) \mathbf{B}^{T} . Hence find (c) $(\mathbf{A}\mathbf{B})^{\mathrm{T}}$ (d) $(\mathbf{B}\mathbf{A})^{\mathrm{T}}$.

10 Given that

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 4 & -7 \\ 6 & 6 & -3 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 1 & 2 & 4 \\ 3 & 1 & -2 \\ -1 & 1 & 3 \end{pmatrix}$$

find (a) \mathbf{A}^{T} (b) \mathbf{B}^{T} . Hence find (c) $(\mathbf{A}\mathbf{B})^{\mathrm{T}}$ (d) $(\mathbf{B}\mathbf{A})^{\mathrm{T}}$.

System of Linear Equations Questions

<u>Q1</u>

Consider the following system of simultaneous equations

$$x - y + 2z = 6$$

$$2x + 3y - z = 7$$

$$x + 9y - 8z = -4$$

- i) By evaluating an appropriate determinant, show that this system does not have a unique solution.
- ii) Solve this system of simultaneous equations. (NICCEA)

<u>Q2</u>

Consider the system of simultaneous equations

3x + y - 2z = -4x + 2y + 3z = 113x - 4y - 13z = -41

i) Solve this system of equations.

ii) Hence show in a sketch how the planes defined by the above equations are arranged so that the solution is of the form found in part I. (NICCEA)

<u>Q3</u>

Show that the equations

$$x + \lambda y + z = 2a$$
$$x + y + \lambda z = 2b$$
$$\lambda x + y + \lambda z = 2c$$

where a, b, $c \in \mathbb{R}$, have a unique solution for x, y, z provided that $\lambda \neq 1$ and $\lambda \neq -1$.

a) In the case when λ = 1, state the condition to be satisfied by a, b and c for the equations to be consistent.
 b) In the case when λ = 1, state the condition to be satisfied by a, b and c for the equations to be consistent.

b) In the case when $\lambda = -1$, show that for the equations to be consistent

a + c = 0

Solve the equations in this case.

Give a geometrical description of the configuration of the three planes represented by the equations in the cases:

i) $\lambda = -1$ and a + c = 0ii) $\lambda = -1$ and $a + c \neq 0$. (NEAB)

<u>Q4</u>

Find the values of k for which the simultaneous equations

$$kx + 2y + z = 0$$

$$3x - 2z = 4$$

$$3x - 6ky - 4z = 14$$

do not have a unique solution for x, y and z.

Show that, when k = -2, the equations are inconsistent, and give a geometrical interpretation of the situation in this case. (OCR)

<u>Q5</u>

Given that

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -k \\ 1 & -k & -1 \end{pmatrix}$$

find det \mathbf{M} in terms of k.

Determine the values of k for which the simultaneous equations

$$x + y - z = 1$$
$$x + 2y - kz = 0$$
$$x - ky - z = 1$$

have a unique solution.

- i) Solve these equations in the case when k = 2.
- ii) Show that the equations have no solution when k = 1.
- III) Find the general solution when k = -1.

Give a geometrical interpretation of the equations in each of the three cases k = 2, k = 1 and k = -1. (NEAB)

<u>Q6</u>

Show that the only real value of λ for which the simultaneous equations

$$(2 + \lambda)x - y + z = 0$$

$$x - 2\lambda y - z = 0$$

$$4x - y - (\lambda - 1)z = 0$$

have a solution other than x = y = z = 0 is -1.

Solve the equations in the case when $\lambda = -1$, and interpret your result geometrically. (NEAB)

<u>Q7</u>

Consider the system of equations x, y and z,

$$2x + 3y - z = p$$
$$x - 2z = -5$$
$$qx + 9y + 5z = 8$$

where p and q are real.

Find the values of p and q for which this system has:

i) a unique solution

ii) an infinite number of solutions

iii) no solution. (NICCEA)

<u>Answers</u>

1(i) det =0

(ii) (4-t,t,t+1) i.e. Solution are on a straight line (spine of a book)

2 (i) (^{7t-19}/₅, ^{37-11t}/₅, t)
(ii) Spine of a book
3(a) a=b=c
(b) (i) Equation 1 and 2 are the same and 3 is a non-parallel plane hence an infinite number of solutions
(ii) 2 parallel planes and the other plane intersecting both
4 Triangular prism
5(i) planes met at a point
(ii) Triangular prism

(iii) 2 parallel planes and the other plane intersecting both 6 Spine of a book

7(i) *q* ≠ 2 (ii) q=2, p=-4

(iii) q=2, $p \neq -4$

Roots of Polynomials Questions

Exercise 4A

- 1 α and β are the roots of the quadratic equation $3x^2 + 7x 4 = 0$. Without solving the equation, find the values of:
 - **a** $\alpha + \beta$ **b** $\alpha\beta$ **c** $\frac{1}{\alpha} + \frac{1}{\beta}$ **d** $\alpha^2 + \beta^2$
- 2 α and β are the roots of the quadratic equation $7x^2 3x + 1 = 0$. Without solving the equation, find the values of:
 - **a** $\alpha + \beta$ **b** $\alpha\beta$ **c** $\frac{1}{\alpha} + \frac{1}{\beta}$ **d** $\alpha^2 + \beta^2$
- 3 α and β are the roots of the quadratic equation $6x^2 9x + 2 = 0$. Without solving the equation, find the values of:
 - **a** $\alpha + \beta$
 - **c** $\frac{1}{\alpha} + \frac{1}{\beta}$ **d** $\alpha^3 + \beta^3$ **Hint** Try expanding $(\alpha + \beta)^3$.

b $\alpha^2 \times \beta^2$

- 4 The roots of a quadratic equation $ax^2 + bx + c = 0$ are $\alpha = 2$ and $\beta = -3$. Find integer values for *a*, *b* and *c*.
- 5 The roots of a quadratic equation $ax^2 + bx + c = 0$ are $\alpha = -\frac{1}{2}$ and $\beta = -\frac{1}{3}$ Find integer values for *a*, *b* and *c*.
- 6 The roots of a quadratic equation $ax^2 + bx + c = 0$ are $\alpha = \frac{-1 + i}{2}$ and $\beta = \frac{-1 i}{2}$ Find integer values for *a*, *b* and *c*.
- 7 One of the roots of the quadratic equation $ax^2 + bx + c = 0$ is $\alpha = -1 4i$.
 - a Write down the other root, β .
 - **b** Given that a = 1, find the values of b and c.
- **8** Given that $kx^2 + (k-3)x 2 = 0$, find the value of k if the sum of the roots is 4.
- 9 The equation $nx^2 (16 + n)x + 256 = 0$ has real roots α and $-\alpha$. Find the value of n.
- P 10 The roots of the equation $6x^2 + 36x + k = 0$ are reciprocals of each other. Find the value of k.
- P 11 The equation $mx^2 + 4x + 4m = 0$ has roots of the form k and 2k. Find the values of m and k.
- (P) 12 The equation $ax^2 + 8x + c = 0$, where a and c are real constants, has roots α and α^* .
 - a Given that $\operatorname{Re}(\alpha) = 2$, find the value of a.
 - **b** Given that $Im(\alpha) = 3i$, find the value of c.
- (P) 13 The equation $4x^2 + px + q = 0$, where p and q are real constants, has roots α and α^* .

A 73

- **a** Given that $\operatorname{Re}(\alpha) = -3$, find the value of *p*.
- **b** Given that $Im(\alpha) \neq 0$, find the range of possible values of q.

ANSWERS

Exercise 4A		
1 7	L 4	~ 7

1	$a -\frac{1}{3}$	$D - \frac{1}{3}$	C	4	u	9
2	a $\frac{3}{7}$	b $\frac{1}{7}$	с	3	d	$-\frac{5}{49}$
3	a $\frac{3}{2}$	$\mathbf{b} = \frac{1}{9}$	с	$\frac{9}{2}$	d	15 8
4	a = 1, b = 1, c	r = -6		-		
5	a = 6, b = 5, c	= 1				
6	a = 2, b = 2, a	= 1				
7	a -1 + 4i		b	b = 2, c = 2	17	
8	3 5					
9	-16					
10	6	0/5			10	
11	$k = \sqrt{2}$ and m	$=-\frac{2\sqrt{2}}{2}$ or $k=$	$-\sqrt{2}$	$\overline{2}$ and $m = -\frac{2}{3}$	2 12	
12	a -2	3	b	-26	э	
13	a 24		b	q > 36		

Exercise 4B

1	α,β and γ are the roo	ts of the cubic equa	ation $2x^3 + 5x^2 - 2x + 3$	= 0. Find the values	of:
	a $\alpha + \beta + \gamma$	b $\alpha\beta\gamma$	c $\alpha\beta + \beta\gamma + \gamma\alpha$	d $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$	
2	α,β and γ are the roo	ts of the cubic equa	ation $x^3 + 5x^2 + 17x + 13$	3 = 0. Find the values	s of:
	a $\alpha + \beta + \gamma$	b $\alpha\beta\gamma$	c $\alpha\beta + \beta\gamma + \gamma\alpha$	d $\alpha^2 \beta^2 \gamma^2$	
3	α,β and γ are the roo	ts of the cubic equa	ation 7x ³ – 4x ² – x + 6 =	0. Find the values o	f:
	a $\alpha + \beta + \gamma$	b $\alpha\beta\gamma$	c $\alpha^3\beta^3\gamma^3$	d $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$	
4	The roots of a cubic en Find integer values for	quation $ax^3 + bx^2 + ax^2 + bx^2 +$	$+ cx + d = 0$ are $\alpha = \frac{3}{2}$, β	$=\frac{1}{2}$ and $\gamma = 1$.	
5	The roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$ are $\alpha = 1 + 3i$, $\beta = 1 - 3i$ and $\gamma = \frac{1}{2}$ Find integer values for a, b, c and d.				
6	The roots of a cubic en Find integer values for	quation $ax^3 + bx^2 + ax^2 + bx^2 +$	$+cx + d = 0$ are $\alpha = \frac{5}{4}, \beta$	$=-\frac{3}{2}$ and $\gamma = \frac{1}{2}$	
7	The cubic equation 16 a Write down the value	$kx^3 - kx^2 + 1 = 0$ has uses of $\alpha\beta + \beta\gamma + \gamma q$	is roots α , β and γ . α and $\alpha\beta\gamma$.		(2 marks)
	b i Given that $\alpha = \beta$ ii Find the value of	, find the roots of t k .	he equation.		(5 marks) (1 mark)
8	The cubic equation $2x$	$k^3 - kx^2 + 30x - 13$	= 0 has roots α , β and γ		
	a Write down the valu	$a = of \alpha \beta + \beta \gamma + \gamma c$	α and $\alpha\beta\gamma$, and express β	k in terms of	
	α , β and γ .	2: End the volue of	5 J_		(3 marks)
-	b Given that $\alpha = 2 - 3$	si, ind the value of	к.		(4 marks)
9	The cubic equation x^3	-mx + n = 0 has	roots 1, -4 and α .		(1 mark)
	a State, with a reason	1, whether α is real			(1 marks)
	b Find the values of <i>i</i>	$m, n \text{ and } \alpha.$			(1 111113)
10	The cubic equation 23	$x^3 - 10x^2 + 8x - k = $	= 0 has a root at $x = 3 -$	i.	
	a Find the other two	roots of the equat	ion.		(4 marks)
	b Hence find the value	ie of k.			(2 marks)
11	The cubic equation x^3	$3 - 14x^2 + 56x - 64$	$k = 0$ has roots α , $k\alpha$ and	l $k^2 \alpha$ for some real c	onstant <i>k</i> .
	Find the values of α a	and k.			(5 marks)

- 12 Given that the roots of $8x^3 + 12x^2 cx + d = 0$ are α , $\frac{\alpha}{2}$ and $\alpha 4$, find α , c and d. (5 marks)
- 13 Given that the roots of the cubic equation $2x^3 + 48x^2 + cx + d = 0$ are α , 2α and 3α , find the values of α , c and d. (5 marks)

ANSWERS

Exe	ercise 4B			
1	a $-\frac{5}{2}$ b	-3/2	c -1	$d \frac{2}{3}$
2	a -5 b	-13	c 17	d 169
3	$\mathbf{a} \frac{4}{7}$ b	$-\frac{6}{7}$	c $-\frac{216}{343}$	$d \frac{1}{6}$
4	a = 4, b = -12, a	r = 11, d = -3	3	0
5	a = 2, b = -5, c =	= 22, <i>d</i> = -10)	
6	a = 16, b = -4, a	= -32, d = 1	15	
7	a $\alpha\beta + \beta\gamma + \gamma\alpha$	= 0, $\alpha\beta\gamma$ = -	$\frac{1}{16}$	
	b i $\alpha = \frac{1}{2}, \beta = \frac{1}{2}$	$\gamma = -\frac{1}{4}$	ii 12	
8	a $\alpha\beta + \bar{\beta}\gamma + \gamma \bar{\alpha}$	= 15, $\alpha\beta\gamma$ =	$\frac{13}{2}, k = 2(a)$	$(\alpha + \beta + \gamma)$ b 9
9	a Yes – there a also be a roo	re two other ot.	real roots	, so α^* couldn't
	b <i>m</i> = 13, <i>n</i> =	12, $\alpha = 3$		
10	a -1 and 3 + i		b -20	
11	$\alpha = 2$ and $k = 2$	or $\alpha = 8$ and	$k = \frac{1}{2}$	
12	$\alpha=1,c=32,d$	= 12		
13	$\alpha = -4, c = 352,$	<i>d</i> = 768		

10				
1	$\begin{array}{l} \alpha, \beta, \gamma \text{ and } \delta \text{ are the roots of} \\ 4x^4 + 3x^3 + 2x^2 - 5x - 4 = 0. \\ \text{find the values of:} \\ \mathbf{a} \alpha + \beta + \gamma + \delta \\ \mathbf{c} \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta \end{array}$	the quartic equation Without solving the equation, b $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$ d $\frac{1}{\alpha} + \frac{1}{\alpha} + \frac{1}{\alpha} + \frac{1}{2} + \frac{1}{5}$	Hint $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ $= \frac{\beta\gamma\delta + \alpha\gamma\delta + \alpha\beta\delta + \alpha}{\alpha\beta\gamma\delta}$	<u> κβγ</u>
2	α , β , γ and δ are the roots of a $\alpha + \beta + \gamma + \delta$ d $\alpha\beta\gamma\delta$	the quartic equation $2x^4 + 4x^3 - 3x^2 - \mathbf{b} \ \alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$ $\mathbf{e} \ \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$	x + 2 = 0. Find the value $\mathbf{c} \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta +$	es of: $\beta\gamma\delta$
3	α , β , γ and δ are the roots of Find the values of:	the quartic equation $x^4 + 3x^3 + 2x^2 - 3x^3$	x + 4 = 0.	Bark
	$ a \ \alpha + \beta + \gamma + \delta d \ \alpha \beta \gamma \delta $	b $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$ e $\alpha^2\beta^2\gamma^2\delta^2$	$c \alpha \beta \gamma + \alpha \beta \delta + \alpha \delta + \alpha \beta \delta + \alpha \beta \delta + \alpha \beta \delta + \alpha $	010
4	α , β , γ and δ are the roots of Find the values of:	the quartic equation $7x^4 + 6x^3 - 5x^2 + 6x^2 + $	-4x + 3 = 0.	Barto
	$\mathbf{a} \ \alpha + \beta + \gamma + \delta$	b $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$ c $\alpha^{3}\beta^{3}\alpha^{3}\delta^{3}$	$\mathbf{c} \ \alpha \beta \gamma + \alpha \beta \delta + \alpha \beta \delta + \alpha \beta \delta + \alpha \delta \delta \mathbf{c}$	<i>p</i> 10
5	d $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ The roots of a quartic equation	ion $ax^4 + bx^3 + cx^2 + dx + e = 0$ are $\alpha =$	$-\frac{3}{2}, \beta = -\frac{1}{2}, \gamma = -2$ and	$\delta = \frac{2}{3}$
э	Find integer values for <i>a</i> , <i>b</i> , o	c, d and e.	1 q - 1 = 1 + i and	4
6	The roots of a quartic equat $\delta = 1 - i$. Find integer values		$=-\frac{1}{2}, p=\frac{1}{3}, \gamma=1+1$ and	25
7	The roots of a quartic equat $\Sigma \alpha \beta \gamma = -\frac{53}{72}$ and $\alpha \beta \gamma \delta = -\frac{1}{6}$.	tion $ax^4 + bx^3 + cx^2 + dx + e = 0$ are su Find integer values for <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> and <i>e</i>	ch that $\Sigma \alpha = \frac{17}{12}, \Sigma \alpha \beta = \cdot$.	$-\frac{23}{72}$,
8	The quartic equation $x^4 - 1$ $\alpha + 3k$ for some real consta	$6x^3 + 86x^2 - 176x + 105 = 0$ has roo nt <i>k</i> . Solve the equation.	ts α , $\alpha + k$, $\alpha + 2k$ and	(7 marks)
9	The quartic equation $3072s$ some real constant <i>r</i> . Solve	$x^4 - 2880x^3 + 840x^2 - 90x + 3 = 0$ hat the equation.	s roots α , $r\alpha$, $r^2\alpha$ and r	³ α for (7 marks)
10	Three of the roots of the q a Find the fourth root. b Find the values of m and	uartic equation $40x^4 + 90x^3 - 115x^2$ d <i>n</i> .	+mx + n = 0 are 1, -3	and ¹ / ₂ (2 marks) (4 marks)
11	The quartic equation $2x^4 - \mathbf{a}$ Find α .	$-34x^3 + 202x^2 + dx + e = 0$ has roots	α , α + 1, 2 α + 1 and 3.	α + 1. (2 marks) (4 marks)
12	b Find the values of u and The equation $4x^4 - 19x^3 +$	$px^2 + qx + 10 = 0, x \in \mathbb{C}, p, q \in \mathbb{R}, 1$	tas roots α , β , γ and δ .	
12	Given that $\gamma = 3 + i$ and δ a show that $4\alpha + 4\beta + 5 =$ b Hence find all the roots c Show these roots on an	= γ^* , = 0 and that $4\alpha\beta - 1 = 0$. of the quartic equation and find the Argand diagram.	values of p and q .	(2 marks) (5 marks) (3 marks)
13	A quartic equation $6x^4 - 1$	$10x^3 + 3x^2 + 6x - 40 = 0$ has roots α ,	, β , γ and δ .	(3 marks)
	a Show that $\frac{1-31}{2}$ is one	root of the equation.		(5 marks)
	b Without solving the equc Show these roots on an	Argand diagram.		(3 marks)

ANSWERS
Exercise 4C 1 a $-\frac{3}{4}$ b $\frac{1}{2}$ c $\frac{5}{4}$ d $\frac{5}{4}$ 2 a -2 b $-\frac{3}{2}$ c $\frac{1}{2}$ d 1 e $\frac{1}{2}$ 3 a -3 b 2 c 1 d $\frac{1}{4}$ e 16 4 a $-\frac{6}{7}$ b $-\frac{5}{7}$ c $-\frac{4}{7}$ d $-\frac{4}{3}$ e $\frac{27}{343}$
5 $a = 12, b = 40, c = 25, d = -20, e = -12$ 6 $a = 6, b = -11, c = 9, d = 4, e = -2$ 7 $a = 72, b = -102, c = -25, d = 53, e = -12$ 8 $x = 1, 3, 5 \text{ or } 7$ 9 $x = \frac{1}{2}, \frac{1}{4}, \frac{1}{8} \text{ or } \frac{1}{16}$ 10 $a -\frac{3}{4}$ $b m = -60, n = 45$
11 a 2 b $d = -494, e = 420$ 12 a $\alpha + \beta + (3 + i) + (3 - i) = \frac{19}{4} \Rightarrow 4\alpha + 4\beta + 5 = 0$ $\alpha\beta(3 + i)(3 - i) = 10\alpha\beta = \frac{10}{4} \Rightarrow 4\alpha\beta - 1 = 0$ b $-1, -\frac{1}{4}, 3 + i, 3 - i, p = 11, q = 44$ c Im $-1 -\frac{1}{4}$ $-\frac{1}{$
13 a $6\left(\frac{1-31}{2}\right) - 10\left(\frac{1-31}{2}\right) + 3\left(\frac{1-31}{2}\right) + 6\left(\frac{1-31}{2}\right)$ b $\frac{1+3i}{2}$, $2, -\frac{4}{3}$ c $\lim_{\substack{-\frac{4}{3} \\ -\frac{4}{3} \\ \frac{1-3i}{2} \\ \frac{1-3i}$

Exercise 4D

- 1 A quadratic equation has roots α and β . Given that $\alpha + \beta = 4$ and $\alpha\beta = 3$, find:
 - **a** $\frac{1}{\alpha} + \frac{1}{\beta}$ **b** $\alpha^2 \beta^2$ **c** $\alpha^2 + \beta^2$ **d** $\alpha^3 + \beta^3$
- **2** A quadratic equation has roots α and β . Given that $\alpha + \beta = -\frac{2}{3}$ and $\alpha\beta = \frac{3}{4}$, find:
 - **a** $\frac{1}{\alpha} + \frac{1}{\beta}$ **b** $\alpha^2 \beta^2$ **c** $\alpha^2 + \beta^2$ **d** $\alpha^3 + \beta^3$

3 A quadratic equation has roots α and β . Given that $\alpha + \beta = \frac{5}{4}$ and $\alpha\beta = -\frac{1}{3}$, find: **a** $(\alpha + 2)(\beta + 2)$ **b** $(\alpha - 4)(\beta - 4)$ **c** $(\alpha^2 + 1)(\beta^2 + 1)$

- 4 A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = 2$, $\alpha\beta + \beta\gamma + \gamma\alpha = -3$ and $\alpha\beta\gamma = 4$, find:
 - **a** $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ **b** $\alpha^2 + \beta^2 + \gamma^2$ **c** $\alpha^3 + \beta^3 + \gamma^3$ **d** $(\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2$

5 A cubic equation has roots α , β and γ . Given that $\Sigma \alpha = \frac{3}{2}$, $\Sigma \alpha \beta = -\frac{4}{3}$ and $\alpha \beta \gamma = \frac{1}{2}$, find: **a** $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ **b** $\alpha^2 + \beta^2 + \gamma^2$ **c** $\alpha^3 + \beta^3 + \gamma^3$ **d** $\alpha^3 \beta^3 \gamma^3$

6 A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = -\frac{1}{2}$, $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{3}{4}$ and $\alpha\beta\gamma = -\frac{2}{5}$, find:

a $(\alpha + 2)(\beta + 2)(\gamma + 2)$ **b** $(\alpha - 3)(\beta - 3)(\gamma - 3)$ **c** $(1 - \alpha)(1 - \beta)(1 - \gamma)$ **d** $(\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2$ **e** $(\alpha\beta)^3 + (\beta\gamma)^3 + (\gamma\alpha)^3$

7 A quartic equation has roots α , β , γ and δ . Given that $\alpha + \beta + \gamma + \delta = 3$, $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = 5$, $\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = -4$ and $\alpha\beta\gamma\delta = -2$, find:

a $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ **b** $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ **c** $\alpha^4 \beta^4 \gamma^4 \delta^4$

8 A quartic equation has roots α , β , γ and δ . Given that $\Sigma \alpha = \frac{1}{2}$, $\Sigma \alpha \beta = -\frac{3}{4}$, $\Sigma \alpha \beta \gamma = -\frac{1}{5}$ and $\alpha \beta \gamma \delta = \frac{4}{3}$, find: a $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ b $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ c $\alpha^3 \beta^3 \gamma^3 \delta^3$

- **d** $(\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2 + (\gamma\delta)^2 + (\alpha\delta)^2 + (\beta\delta)^2$
- e $(\alpha\beta\gamma)^2 + (\alpha\beta\delta)^2 + (\alpha\gamma\delta)^2 + (\beta\gamma\delta)^2$
- **9** A quartic equation has roots α , β , γ and δ . Given that $\Sigma \alpha = -\frac{1}{2}$, $\Sigma \alpha \beta = -\frac{1}{3}$, $\Sigma \alpha \beta \gamma = \frac{1}{4}$ and $\alpha \beta \gamma \delta = \frac{3}{2}$, find:

a
$$(\alpha + 1)(\beta + 1)(\gamma + 1)(\delta + 1)$$
 b $(2 - \alpha)(2 - \beta)(2 - \gamma)(2 - \delta)$

10 The roots of the equation $x^3 - 6x^2 + 9x - 15 = 0$ are α , β and γ .

- **a** Write down the values of $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$. (1 mark) **b** Hence find the values of:
 - i $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ (2 marks)ii $\alpha^2 + \beta^2 + \gamma^2$ (2 marks)iii $(\alpha 1)(\beta 1)(\gamma 1)$ (3 marks)

11 The roots of the equation $2x^3 + 4x^2 + 7 = 0$ are α , β and γ .

a	Write down the values of $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$.	(1 mark)
b	Hence find the values of:	
	$\mathbf{i} \alpha^2 + \beta^2 + \gamma^2$	(2 marks)
	ii $\alpha^3 \beta^3 \gamma^3$	(2 marks)
	iii $(\alpha + 2)(\beta + 2)(\gamma + 2)$	(3 marks)

12	Show that c	$x^3 + \beta^3 - \beta^3$	$\gamma^3 \equiv (a$	$\alpha + \beta$	$(+ \gamma)^{3} -$	$3(\alpha + \beta)$	$(\beta + \gamma)$	$(\alpha\beta + \beta)$	$\beta\gamma + \gamma$	$(\alpha) + 3\alpha$	3γ.
----	-------------	---------------------------	----------------------	------------------	--------------------	---------------------	--------------------	-------------------------	------------------------	----------------------	-----

- **13** The roots of the equation $3x^3 px + 11 = 0$ are α , β and γ . a Given that $\alpha\beta + \beta\gamma + \gamma\alpha = 4$, write down the value of p. (1 mark) **b** Write down the values of $\alpha + \beta + \gamma$ and $\alpha\beta\gamma$. (1 mark) c Hence find the value of $(3 - \alpha)(3 - \beta)(3 - \gamma)$. (3 marks) 14 The roots of the equation $x^4 + 2x^2 - x + 3 = 0$ are α , β , γ and δ . **a** Write down the values of $\Sigma \alpha$, $\Sigma \alpha \beta$, $\Sigma \alpha \beta \gamma$ and $\alpha \beta \gamma \delta$. (1 mark) **b** Hence find the values of: $\mathbf{i} \quad \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ (3 marks) ii $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ (3 marks) iii $(\alpha + 1)(\beta + 1)(\gamma + 1)(\delta + 1)$ (3 marks) 15 The roots of the equation $ax^4 + 3x^3 + 2x^2 + x - 6 = 0$ are α , β , γ and δ . **a** Given that $\alpha\beta\gamma\delta = -3$, write down the value of *a*. (1 mark)
 - **b** Write down the values of $\Sigma \alpha$, $\Sigma \alpha \beta$ and $\Sigma \alpha \beta \gamma$. (1 mark) **c** Hence find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ (3 marks)

16 Prove that if a quartic equation has roots α , β , γ and δ then $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 \equiv (\Sigma \alpha)^2 - 2\Sigma \alpha \beta$.

ANSWERS

Exercise 4D

c 10 d 28 $a \frac{4}{3}$ b 9 1 **b** $\frac{9}{16}$ **c** $-\frac{19}{18}$ **d** $\frac{65}{54}$ a $-\frac{8}{9}$ 2 b $\frac{16}{16}$ c $\frac{-18}{18}$ d $\frac{54}{54}$ b $\frac{32}{3}$ c $\frac{481}{144}$ b 10 c 38 d -7 b $\frac{59}{12}$ c $\frac{87}{8}$ d $\frac{1}{8}$ b $\frac{-683}{20}$ c $\frac{53}{20}$ d $\frac{13}{80}$ **a** $\frac{37}{6}$ **a** $-\frac{3}{4}$ 3 4 a $-\frac{8}{3}$ 5 **a** $\frac{71}{10}$ $e \frac{723}{1600}$ 6 **b** -1 **c** 16 7 a 2 **a** $-\frac{3}{20}$ **b** $\frac{7}{4}$ **c** $\frac{64}{27}$ d $\frac{823}{240}$ $e \frac{51}{25}$ 8 **b** $\frac{59}{3}$ 9 a $\frac{23}{12}$ 10 a $\alpha + \beta + \gamma = 6$, $\alpha\beta + \beta\gamma + \gamma\alpha = 9$, $\alpha\beta\gamma = 15$ b i $\frac{3}{5}$ ii 18 iii 11 11 a $\alpha + \beta + \gamma = -2$, $\alpha\beta + \beta\gamma + \gamma\alpha = 0$, $\alpha\beta\gamma = -\frac{7}{2}$ b i 4 ii $-\frac{343}{8}$ iii $-\frac{7}{2}$ 12 $(\alpha + \beta + \gamma)^3 \equiv (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \beta\gamma + \gamma\alpha))$ $\equiv \alpha^3 + \beta^3 + \gamma^3 + \alpha(\beta^2 + \gamma^2) + \beta(\alpha^2 + \gamma^2)$ $+\gamma(\alpha^{2}+\beta^{2})+2(\alpha+\beta+\gamma)(\alpha\beta+\beta\gamma+\gamma\alpha)$ $(\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha)$ $\equiv \alpha^2\beta + \beta^2\alpha + \alpha^2\gamma + \gamma^2\alpha + \beta^2\gamma + \gamma^2\beta + 3\alpha\beta\gamma$ $\equiv \alpha(\beta^2 + \gamma^2) + \beta(\alpha^2 + \gamma^2) + \gamma(\alpha^2 + \beta^2) + 3\alpha\beta\gamma$ $(\alpha + \beta + \gamma)^3 \equiv \alpha^3 + \beta^3 + \gamma^3 + 3(\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha)$ $-3\alpha\beta\gamma$ $\alpha^3 + \beta^3 + \gamma^3 \equiv (\alpha + \beta + \gamma)^3 - 3(\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha)$ + $3\alpha\beta\gamma$ **b** $\alpha + \beta + \gamma = 0, \ \alpha\beta\gamma = -\frac{11}{3}$ $c \frac{128}{2}$ **13 a** -12 14 a $\sum \alpha = 0, \sum \alpha \beta = 2, \sum \alpha \beta \gamma = 1, \alpha \beta \gamma \delta = 3$ **b** i $\frac{1}{3}$ **ii** -4 **iii** 7 **15** a 2 **b** $\sum \alpha = -\frac{3}{2}, \sum \alpha \beta = 1, \sum \alpha \beta \gamma = -\frac{1}{2}$ **c** $\frac{1}{6}$ **16** $(\sum \alpha)^2 \equiv (\alpha + \beta + \gamma + \delta)^2$ $\equiv \alpha^2 + \beta^2 + \gamma^2 + \delta^2 + 2(\alpha\beta + \beta\gamma + \gamma\delta + \alpha\gamma + \beta\delta + \alpha\delta)$ $\Rightarrow \alpha^2 + \beta^2 + \gamma^2 + \delta^2 \equiv \left(\sum \alpha\right)^2 - 2(\alpha\beta + \beta\gamma + \gamma\delta + \alpha\gamma + \beta\delta)$ $+ \alpha \delta$

- 1 The cubic equation $x^3 7x^2 + 6x + 5 = 0$ has roots α , β and γ . Find equations with roots:
 - **a** $(\alpha + 1), (\beta + 1)$ and $(\gamma + 1)$ **b** $2\alpha, 2\beta$ and 2γ
- **2** The cubic equation $3x^3 4x^2 5x + 1 = 0$ has roots α , β and γ . Find equations with roots:
 - **a** $(\alpha 3), (\beta 3)$ and $(\gamma 3)$ **b** $\frac{\alpha}{2}, \frac{\beta}{2}$ and $\frac{\gamma}{2}$

3 The cubic equation x³ - 3x² + 4x - 7 = 0 has roots α, β and γ.
Without solving the equation, find the equation with roots (2α + 1), (2β + 1) and (2γ + 1).
Give your answer in the form aw³ + bw² + cw + d = 0 where a, b, c and d are integers to be determined.
(5 marks)

- 4 The cubic equation x³ + 4x² 4x + 2 = 0 has roots α, β and γ.
 Without solving the equation, find the equation with roots (2α 1), (2β 1) and (2γ 1). Give your answer in the form w³ + pw² + qw + r = 0 where p, q and r are integers to be found.
 (5 marks)
- 5 The cubic equation 3x³ x² + 2x 5 = 0 has roots α, β and γ.
 Without solving the equation, find the equation with roots (3α + 1), (3β + 1) and (3γ + 1).
 Give your answer in the form aw³ + bw² + cw + d = 0 where a, b, c and d are integers to be determined.
 (5 marks)
- 6 The quartic equation $2x^4 + 4x^3 5x^2 + 2x 1 = 0$ has roots α , β , γ and δ . Find equations with integer coefficients that have roots:
 - **a** 3α , 3β , 3γ and 3δ **b** $(\alpha 1)$, $(\beta 1)$, $(\gamma 1)$ and $(\delta 1)$

7 The quartic equation $x^4 + 2x^3 - 3x^2 + 4x + 5 = 0$ has roots α , β , γ and δ . Without solving the equation, find equations with integer coefficients that have roots:

- **a** 2α , 2β , 2γ and 2δ (6 marks)
- **b** $(\alpha 2), (\beta 2), (\gamma 2) \text{ and } (\delta 2)$ (6 marks)

8 The quartic equation $3x^4 + 5x^3 - 4x^2 - 3x + 1 = 0$ has roots α , β , γ and δ . Without solving the equation, find equations with integer coefficients that have roots:

a	3α , 3β , 3γ and 3δ	(6 marks)
b	$(\alpha + 1), (\beta + 1), (\gamma + 1) \text{ and } (\delta + 1)$	(6 marks)

ANSWERS

Ex	ercise 4E	<i>c</i>		0 4 10 3 45 3 54 04 0
1	$9 m^3 10m^2 + 23m 0 = 0$	6	a	$2w^4 + 12w^3 - 45w^2 + 54w - 81 = 0$
1	a $w^{2} = 10w^{2} + 23w - 9 = 0$ b $w^{3} - 14w^{2} + 24w + 40 = 0$		b	$2w^4 + 12w^3 + 19w^2 + 12w + 2=0$
2	a $3w^3 + 23w^2 + 52w + 31 = 0$	7	a	$w^4 + 4w^3 - 12w^2 + 32w + 80 = 0$
	b $24w^3 - 16w^2 - 10w + 1 = 0$		b	$w^4 + 10w^3 + 33w^2 + 48w + 33 = 0$
3	$w^3 - 9w^2 + 31w - 79 = 0$	8	a	$w^4 + 5w^3 - 12w^2 - 27w + 27 = 0$
4 5	$w^{3} + 11w^{2} + 3w + 9 = 0$ $w^{3} - 4w^{2} + 11w - 53 = 0$		b	$3w^4 - 7w^3 - w^2 + 8w - 2 = 0$

Mixed exercise 4

1	The roots of a quartic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ are $\alpha = \frac{1}{5}$, $\beta = -\frac{2}{5}$, $\gamma = -\frac{3}{5}$ Find integer values for <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> and <i>e</i> .	and $\delta = -\frac{1}{2}$
2	The cubic equation $x^3 + px^2 + 37x - 52 = 0$ has roots α , β and γ . a Write down the values of $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$, and express p in terms of α , β and γ b Given that $\alpha = 3 - 2i$, find the value of p.	7. (3 marks) (4 marks)
3	 The cubic equation 2x³ + 5x² - 2x + q = 0 has a root at x = -2 + i. a Find the other two roots of the equation. b Hence find the value of q. 	(4 marks) (2 marks)
4	The quartic equation $x^4 - 40x^3 + 510x^2 - 2200x + 1729 = 0$ has roots α , $\alpha + 2k$, $\alpha + 4k$, $\alpha + 6k$ for some real constant k. Solve the equation.	and (7 marks)
5	Three of the roots of the quartic equation $24x^4 - 58x^3 + 17x^2 + dx + e = 0$ are $\frac{1}{2}$, $-\frac{1}{3}$ and a Find the fourth root. b Find the values of <i>d</i> and <i>e</i> .	d 2. (2 marks) (4 marks)
6	The equation $x^4 + 2x^3 + mx^2 + nx + 85 = 0$, $x \in \mathbb{C}$, $m, n \in \mathbb{R}$, has roots α, β, γ and δ . Given that $\alpha = -2 + i$ and $\beta = \alpha^*$, a show that $\gamma + \delta - 2 = 0$ and that $\gamma \delta - 17 = 0$. b Hence find all the roots of the quartic equation and find the values of m and n . c Show these roots on an Argand diagram.	(2 marks) (5 marks) (3 marks)
7	 A quartic equation 4x⁴ - 16x³ + 115x² + 4x - 29 = 0 has roots α, β, γ and δ. a Show that 2 - 5i is one root of the equation. b Without solving the equation, find the other roots. c Show these roots on an Argand diagram. 	(3 marks) (5 marks) (3 marks)
8	The roots of the equation $2x^3 - 5x^2 + 11x - 9 = 0$ are α , β and γ . a Write down the values of $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$. b Hence find the values of: i $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ ii $\alpha^2 + \beta^2 + \gamma^2$ iii $(\alpha - 1)(\beta - 1)(\alpha - 1)$	(1 mark) (2 marks) (2 marks)
9	The roots of the equation $px^4 + 12x^3 + 6x^2 + 5x - 7 = 0$ are α , β , γ and δ . a Given that $\alpha\beta\gamma\delta = -1$, write down the value of p . b Write down the values of $\Sigma\alpha$, $\Sigma\alpha\beta$ and $\Sigma\alpha\beta\gamma$. c Hence find the value of $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$.	(3 marks) (1 mark) (1 mark) (3 marks)
10	The roots of the equation $5x^3 + cx + 21 = 0$ are α , β and γ . a Given that $\alpha\beta + \beta\gamma + \gamma\alpha = -6$, write down the value of <i>c</i> . b Write down values for $\alpha + \beta + \gamma$ and $\alpha\beta\gamma$. c Hence find the value of $(1 - \alpha)(1 - \beta)(1 - \gamma)$.	(1 mark) (1 mark) (3 marks)
11	The cubic equation $2x^3 + 5x^2 + 7x - 2 = 0$ has roots α , β and γ . Without solving the equation, find the equation with roots $(3\alpha + 1)$, $(3\beta + 1)$ and $(3\gamma$ Give your answer in the form $pw^3 + qw^2 + rw + s = 0$ where p, q, r and s are integers to be found.	(+ 1). (5 marks)
12	The quartic equation $6x^4 - 2x^3 - 5x^2 + 7x + 8 = 0$ has roots α , β , γ and δ . Without solving the equation, find equations with integer coefficients that have root a 2α , 2β , 2γ and 2δ	s: (6 marks)
	b $(3\alpha - 2), (3\beta - 2), (3\gamma - 2)$ and $(3\delta - 2)$	(6 marks)

19

ANSWERS

Mixed exercise 4

12 a
$$3w^4 - 2w^3 - 10w^2 + 28w + 64 = 0$$

b $2w^4 + 14w^3 + 21w^2 + 43w + 298 = 0$

*UPM Ex2B Q3,4,6,7,9,10,11,13,18,19,20

- 3. If ai + 8j is parallel to 2i + 4j, find the value of a.
- 4. If a = i + 2j find a, a unit vector in the direction of a.
- 5. If b = 3i j find b, a unit vector in the direction of b.
- 6. Find a vector that is of magnitude 39 units and is parallel to 5i + 12j.
- 7. Find a vector that is of magnitude $3\sqrt{5}$ units and is parallel to 2i j.
- 8. Find a vector that is of magnitude 2 units and is parallel to 4i 3j.
- If the point P has position vector 2i + 3j and point Q has position vector 7i + 4j, find: (a) PQ, (b) QP.
- If the point P has position vector 7i 3j and point Q has position vector 5i + 5j, find: (a) PQ, (b) QP.
- 11. The point P has position vector -5i + 3j and Q is a point such that $\overrightarrow{PQ} = 7i j$. Find the position vector of Q.
- 12. The point P has position vector 3i 2j and Q is a point such that $\overline{QP} = 2i 3j$. Find the position vector of Q.

13. Using
$$\mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ as base vectors, express the vectors $\mathbf{c} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$ and $\mathbf{d} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$ in the form $\lambda \mathbf{a} + \mu \mathbf{b}$.

- 18. The point K has position vector 3i + 2j and point L has position vector i + 3j. Find the position vector of the point which divides KL in the ratio (a) 4:3, (b) 4:-3.
- 19. The three points A, B and C have position vectors a, b and c respectively. If c = 3b 2a, show that A, B and C are collinear.
- 20. The three points A, B and C have position vectors i j, 5i 3j and 11i - 6j respectively. Show that A, B and C are collinear.

ANSWERS Ex2B

1.
$$\overrightarrow{OA} = 2i + 3j$$
, $\overrightarrow{OB} = 3i$, $\overrightarrow{OC} = -i + 3j$, $\overrightarrow{OD} = -3i + 2j$, $\overrightarrow{OE} = -2i - j$,
 $\overrightarrow{OF} = -2i - 2j$, $\overrightarrow{OG} = -2j$, $\overrightarrow{OH} = 3i - 3j$
2. (a) (i) $4i + 3j$ (ii) 5 units (iii) $36\cdot8^{*}$ (b) (i) $-4i + j$ (ii) $4\cdot12$ units (iii) 14^{*}
(c) (i) $2i - 3j$ (ii) $3\cdot61$ units (iii) $56\cdot3^{*}$
3. 4 4. $\frac{\sqrt{5}}{5}(i + 2j)$ 5. $\frac{\sqrt{10}}{10}(3i - j)$ 6. $15i + 36j$ 7. $6i - 3j$
8. $\frac{2}{3}(4i - 3j)$ 9. (a) $5i + j$ (b) $-5i - j$ 10. (a) $-2i + 8j$ (b) $2i - 8j$
11. $2i + 2j$ 12. $i + j$
13. $a + 2b$, $\frac{1}{17}a + \frac{2}{17}b$ 14. (a) $\sqrt{10}$ (b) $\sqrt{5}$ (c) $5i$ (d) 5
15. (a) $\binom{4}{-3}$ (b) 5 (c) $\binom{7}{-3}$ (d) $\sqrt{58}$ 16. $6i + j$ 17. $\binom{-2}{-1}$
18. (a) $1\frac{9}{1}i + 2\frac{4}{2}j$ (b) $-5i + 6j$ 21. C, E and F

- If a = i + 2j, b = i 2j, c = 2i 3j and d = 6i + 3j, find which two of these vectors are perpendicular to each other.
- 2. If e = -i 3j, f = i + 3j, g = -3i 2j and h = 6i 9j, find which two of these vectors are perpendicular to each other.
- 3. Find the angle between the vectors a and b given that a = 3i + 4j and b = 5i + 12j. (Give your answer to the nearest degree.)
- 4. Find the angle between the vectors c and d given that c = 5i j and d = 2i + 3j. (Give your answer to the nearest degree.)
- 5. Find the angle between the vectors e and f given that e = -i 2j and f = 2i + j. (Give your answer to the nearest degree.)
- 6. If the angle between the vectors c = ai + 2j and d = 3i + j is 45° find the two possible values of a.
 - The points A, B, C and D have position vectors 5i + j, -3i + 2j, -3i - 3j and i -6j respectively. Show that AC is perpendicular to BD.
 - The points E, F and G have position vectors 2i + 2j, i + 6j and -7i + 4j. Show that the triangle EFG is right-angled at F.
- 10. The points A, B, C and D have position vectors a, b, c and d respectively where a = -2j, b = -2i + 4j, c = 3i + 4j and d = 4i + yj. If AC is perpendicular to BD, find the value of y.
- 11. The points A, B, C and D have position vectors -2i + j, 7j, 3i + 6j and xi + yj respectively. If |AC| = |BD| and AC is perpendicular to BD, find the two possible values of x and the corresponding values of y.

12. If
$$\mathbf{a} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$
 find: (a) a unit vector parallel to \mathbf{a} ,
(b) a unit vector perpendicular to \mathbf{a} .

15. If $\overrightarrow{OA} = 2\mathbf{a} + 3\mathbf{b}$ and $\overrightarrow{OB} = 3\mathbf{a} - 2\mathbf{b}$ show that $\overrightarrow{OA} \cdot \overrightarrow{OB} = 6a^2 + 5\mathbf{a} \cdot \mathbf{b} - 6b^2$.

16. If $\overrightarrow{OC} = 2\mathbf{a} + 3\mathbf{b}$ and $\overrightarrow{OD} = 2\mathbf{a} - 3\mathbf{b}$ show that $\overrightarrow{OC} \cdot \overrightarrow{OD} = 4a^2 - 9b^2$.

ANSWERS Ex2C

1. **b** and **d** 2. **g** and **h** 3. 14° 4. 68° 5. 143° 6. -4 or 1 7. (a) $x^2 + y^2 = 25$ (b) 2x + y = 0 (c) x = 2y (d) 4x + y = 9 10. 1 11. x = 5, y = 2; x = -5, y = 12 12. (a) $\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix}$ (b) $\pm \begin{pmatrix} \frac{4}{5} \\ \frac{3}{5} \end{pmatrix}$ 13. (a) $\begin{pmatrix} 7\sqrt{2} \\ -\sqrt{2} \end{pmatrix}$ (b) $\pm \begin{pmatrix} 3 \\ 21 \end{pmatrix}$ 14. (a) -3i + 4j (b) -6i - j (c) 9i - 3j (d) $35^\circ, 117^\circ, 28^\circ$ 17. (b) 23 18. 131° 19. 4 20. $\frac{13}{5}\sqrt{13}$ 21. $\frac{9}{5}\sqrt{5}$ 22. (b) $k\sqrt{7}, 2k\sqrt{21}$

- 1. If a = 9i 2j 6k, b = 2i 6j + 3k and c = 2i j + 2k find (a) |a| (b) |b| (c) |c| (d) a.b (c) b.c
 - (f) the angle between a and b (to the nearest degree)
 - (g) the angle between **b** and **c** (to the nearest degree).

2. If
$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ find

(a) |a| (b) |b| (c) the angle between a and b (to the nearest degree). 3. If a = 3i + 4j + 12k find a, a unit vector in the direction of a.

- 4. If $\mathbf{b} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}$ find $\hat{\mathbf{b}}$, a unit vector in the direction of \mathbf{b} .
- 5. Find a vector that is perpendicular to 5i j + 2k.
- 6. Find a unit vector that is perpendicular to $\mathbf{i} + 2\mathbf{j} 3\mathbf{k}$.
- 7. State which of the vectors a, b, c or d listed below are perpendicular to the vector $\mathbf{r} = -2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$. a = -3i + 2j + k c = 3i + 3j - k b = -i + 2j + 3k d = 4i - j + 2k
- 11. Points A, B and C have position vectors 2i + 3j k, 3i + 6j 3k and 5i + 12j - 7k respectively. Prove that A, B and C are collinear.
- 12. Points A, B and C have position vectors $\mathbf{i} + 2\mathbf{j} 3\mathbf{k}$, $3\mathbf{i} + \mathbf{j} 5\mathbf{k}$ and 2i - k respectively. Prove that angle BÂC is a right angle.

ANSWERS Ex17A

1. (a) 11 (b) 7 (c) 3 (d) 12 (e) 16 (f) 81* (g) 40* 2. (a) $\sqrt{11}$ (b) $\sqrt{6}$ (c) 76° 3. $\frac{1}{13}i + \frac{4}{13}j + \frac{1}{13}k$ 4. $\begin{pmatrix} \frac{4}{5} \\ \frac{4}{5} \\ -2 \end{pmatrix}$

5. i + j - 2k is one example 6. $\frac{\sqrt{3}}{3}(i + j + k)$ is one example 7. c and d 8. $14: -2: 5, \frac{1}{2}, -\frac{2}{15}, \frac{1}{3}$ 9. 1: 2: -210. (a) 2i - 3j + 6k or any multiple thereof (b) $\frac{2}{3}, -\frac{3}{2}, \frac{4}{3}$ (c) $\frac{1}{2}(2i - 3j + 6k)$ 15. 36°, 68°, 76° 17. 4a + b - 2c 18. 3a - b + 2c

- State the vector equation of the line which is parallel to 2i + 3j k and which passes through the point A, position vector i + j + k.
- 2: State the vector equation of the line which passes through the point B,

position vector $\begin{pmatrix} -1\\2\\1 \end{pmatrix}$ and which is parallel to the vector $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$.

- 3. State a vector that is parallel to the line with vector equation $\mathbf{r} = 3\mathbf{i} + 4\mathbf{j} + \mathbf{k} + \lambda(2\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}).$
- 4. Show that the point with position vector $4\mathbf{i} \mathbf{j} + 12\mathbf{k}$ lies on the line with vector equation $\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k} + \lambda(\mathbf{i} 2\mathbf{j} + 4\mathbf{k})$.
- 5. Points A, B and C have position vectors $\begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} -4 \\ 5 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 8 \\ 1 \\ 7 \end{pmatrix}$

respectively. Find which of these points lie on the line with vector

equation
$$\mathbf{r} = \begin{pmatrix} -1\\4\\1 \end{pmatrix} + \lambda \begin{pmatrix} 3\\-1\\2 \end{pmatrix}$$
.

- 6. Points D, E and F have position vectors i 2j, 4i j + 3k and 7i - 8j - 4k respectively. Find which of these points lie on the line with vector equation r = (2i - 3j + k) + λ(i - j - k).
- 7. If the point A, position vector $a\mathbf{i} + b\mathbf{j} + 3\mathbf{k}$, lies on the line L, vector equation $\mathbf{r} = (2\mathbf{i} + 4\mathbf{j} \mathbf{k}) + \lambda(\mathbf{i} + \mathbf{j} + \mathbf{k})$, find the values of a and b.
- 9. Find the cartesian equations of the lines with vector equations
 (a) r = 2i + 3j k + λ(2i + 3j + k),
 (b) r = 3i j + 2k + μ(3i + 2j 4k),
 (c) r = 2i + j + k + η(2i j k).
- 10. Find the vector equation of the line with parametric equations $x = 2 + 3\lambda$ $y = 5 - 2\lambda$ $z = 4 - \lambda$

Find the vector equations of the lines with the following cartesian equations

(a)
$$\frac{x-2}{3} = \frac{y-2}{2} = \frac{z+1}{4}$$
 (b) $x-3 = \frac{y+2}{4} = \frac{z-3}{-1}$

12. Lines L_1 and L_2 have vector equations $\mathbf{r} = 8\mathbf{i} - \mathbf{j} + 3\mathbf{k} + \lambda(-4\mathbf{i} + \mathbf{j})$ and $\mathbf{r} = -2\mathbf{i} + 8\mathbf{j} - \mathbf{k} + \mu(\mathbf{i} + 3\mathbf{j} - 2\mathbf{k})$ respectively. Show that L_1 and L_2 intersect and find the position vector of the point of intersection. Lines L₁ and L₂ have vector equations

$$\mathbf{r} = \begin{pmatrix} 1\\ 3\\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 4\\ 0\\ 1 \end{pmatrix}$$
 and $\mathbf{r} = \begin{pmatrix} 5\\ 3\\ 8 \end{pmatrix} + \mu \begin{pmatrix} -1\\ 0\\ 2 \end{pmatrix}$ respectively. Show

that L_1 and L_2 intersect and find the position vector of the point of intersection.

15. For each of the pairs of lines given by the following vector equations state whether the lines are parallel lines, non-parallel coplanar lines or skew lines.

(a)
$$\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k} + \lambda(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$$
 and $\mathbf{r} = 2\mathbf{i} + 4\mathbf{j} - \mathbf{k} + \mu(3\mathbf{i} + 6\mathbf{j} - 3\mathbf{k})$.

(b)
$$\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})$$
 and $\mathbf{r} = 7\mathbf{i} + 3\mathbf{j} + 5\mathbf{k} + \mu(-\mathbf{i} + 2\mathbf{j})$.

(c)
$$\mathbf{r} = 2\mathbf{i} - 3\mathbf{j} - \mathbf{k} + \lambda(-\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})$$
 and $\mathbf{r} = 3\mathbf{i} + 7\mathbf{j} + 6\mathbf{k} + \mu(3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k})$.

(d) $\mathbf{r} = \mathbf{i} - 2\mathbf{j} + 4\mathbf{k} + \lambda(3\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ and $\mathbf{r} = -8\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \mu(\mathbf{i} - 2\mathbf{j} - \mathbf{k})$.

16. Find the acute angle between the lines with vector equations

 $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k})$ and $\mathbf{r} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k} + \mu(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$, giving your answer to the nearest degree.

17. Find the acute angle between the lines whose equations are

$$\frac{x-2}{-4} = \frac{y-3}{3} = \frac{z+1}{-1}$$
 and $\frac{x-3}{2} = \frac{y-1}{6} = \frac{z+1}{-5}$, giving your

answer to the nearest degree.

- 18. The vector equations of three lines are:
 - line 1 $r = 3i 2j k + \lambda(-i + 3j + 4k)$
 - line 2 $r = -2i + 4j + k + \mu(-i 2k)$
 - line 3 $r = -2i + j + \eta(2i 3j + 3k)$
 - (a) Show that lines 1 and 2 intersect and find the position vector of the point of intersection.
 - (b) Show that lines 2 and 3 intersect and find the position vector of the point of intersection.
 - (c) Find the distance between these two points of intersection.
- 19. Two lines L_1 and L_2 lie in the x-y plane and have cartesian equations $y = m_1 x + c_1$ and $y = m_2 x + c_2$ respectively. Show that the vector equations of L_1 and L_2 can be written

$$\mathbf{r}_1 = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ c_1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ m_1 \end{pmatrix}$$
 and $\mathbf{r}_2 = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ c_2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ m_2 \end{pmatrix}$.

Use vector methods to show that if θ is the angle between L₁ and L₂

then $\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$.

(i.e. obtain the result of page 380 by vector methods).

 For each of the following parts find the perpendicular distance from the given point to the given line,

(a) the point with position vector
$$\begin{pmatrix} 4\\2\\2 \end{pmatrix}$$
 and the line $\mathbf{r} = \begin{pmatrix} 3\\1\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\2 \end{pmatrix}$

- (b) the point with position vector $3\mathbf{i} + \mathbf{j} \mathbf{k}$ and the line $\mathbf{r} = \mathbf{i} 6\mathbf{j} 2\mathbf{k} + \lambda(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$
- (c) the point (1, 1, 3) and the line $\frac{x+4}{2} = \frac{y+1}{3} = \frac{z-1}{3}$
- (d) the point (-6, -4, -5) and the line $x 5 = \frac{y 6}{2} = \frac{z 3}{4}$

ANSWERS

page 420 Exercise 17C

1.
$$\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} - \mathbf{k})$$
 2. $\mathbf{r} = \begin{pmatrix} -1\\2\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\3 \end{pmatrix}$
3. $2\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$ or multiples thereof 5. B and C 6. F 7. 6, 8
8. (a) $3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$ (b) $\mathbf{r} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} + \lambda(3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$
9. (a) $\frac{x-2}{2} = \frac{y-3}{3} = \frac{z+1}{1}$ (b) $\frac{x-3}{3} = \frac{y+1}{2} = \frac{z-2}{-4}$ (c) $\frac{x-2}{2} = \frac{y-1}{-1} = \frac{z-1}{-1}$
10. $\mathbf{r} = 2\mathbf{i} + 5\mathbf{j} + 4\mathbf{k} + \lambda(3\mathbf{i} - 2\mathbf{j} - \mathbf{k})$
11. (a) $\mathbf{r} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k} + \lambda(3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k})$ (b) $\mathbf{r} = 3\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} - \mathbf{k})$
12. $-4\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ 13. $\begin{pmatrix} 9\\3\\0 \end{pmatrix}$
14. (a) (5, 0, 1) (b) lines do not intersect (c) (4, 5, 9) (d) (12, -3, 3)

15. (a) parallel (b) non parallel coplanar (c) skew (d) non parallel coplanar 16. 79° 17. 69° 18. (a) $\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$ (b) $-4\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$ (c) $5\sqrt{5}$ units 20. (a) $\sqrt{5}$ units (b) $3\sqrt{2}$ units (c) $\sqrt{11}$ units (d) $4\sqrt{6}$ units 21. (a) $\frac{1}{3}\sqrt{21}$ units (b) $\frac{1}{2}\sqrt{14}$ units 22. $\frac{2}{3}\sqrt{35}$ units 23. (a) $\sqrt{3}$ units (b) $\frac{3}{2}\sqrt{21}$ units

1 Simplify as much as possible: (a) $3\mathbf{i} \times \mathbf{j}$ (b) $2\mathbf{i} \times (\mathbf{i} + \mathbf{j} + \mathbf{k})$ (c) $(\mathbf{i} + \mathbf{j}) \times (\mathbf{j} + \mathbf{k}) + (\mathbf{k} + \mathbf{i}) \times (\mathbf{j} - \mathbf{k})$ (\mathbf{d}) $(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \times (2\mathbf{i} - \mathbf{j} + \mathbf{k})$ (e) $(2i - 3j + k) \times (-i + 2j - 4k)$ (i) $(i - j + k) \times (3i - 3j + 3k)$ (g) $(2i + j - 2k) \times (-3i + 4k)$ (h) $(2i + k) \times (i - 2j + 3k)$ (i) $(2i + 3j - k) \times (2i - j + 3k)$ (i) $(-i + 2j - 3k) \times (5i - 4k)$ 2 Find a unit vector which is perpendicular to the vector $(4\mathbf{i} + 4\mathbf{j} - 7\mathbf{k})$ and to the vector $(2\mathbf{i} + 2\mathbf{j} + \mathbf{k})$. 3 Find a unit vector perpendicular to both 2i - 6j - 3k and 4i + 3j - k. (4) Find a vector of magnitude 7 which is perpendicular to both 2i + j - 3k and i - 2j + k. 5 Find the magnitude of the vector $(i + j - k) \times (i - j + k)$. 6 Given that $\mathbf{a} = -\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}$ and $\mathbf{b} = 5\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ find (a) **a.b** (b) $\mathbf{a} \times \mathbf{b}$ (c) the unit vector in the direction of $\mathbf{a} \times \mathbf{b}$. [L]7 Find the sine of the angle between \mathbf{a} and \mathbf{b} where (a) a = 2i - j, b = i + j - k(b) a = i + j + 3k, b = -i + 3k(c) a = -2i + j + k, b = i + 2j + 2k(d) a = i - 2j + 3k, b = 2i - j + 3k(e) a = -i - 2j + k, b = 2i + 3j - k8 Given that $\mathbf{a} = \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = p\mathbf{j} + q\mathbf{k}$ and that $\mathbf{a} \times \mathbf{b} = 2\mathbf{j} + \lambda \mathbf{k}$, find the values of the scalar constants p, qand λ . 9 Given that $\mathbf{u} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$, $\mathbf{v} = a\mathbf{i} + b\mathbf{k}$ and $\mathbf{u} \times \mathbf{v} = \mathbf{i} + c\mathbf{k}$, find the values of the scalar constants a, b and c. Find, in surd form, the cosine of the angle between \mathbf{u} and \mathbf{v} .

[L]

[L]

10 Given that $\mathbf{r} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$, $\mathbf{k} \times \mathbf{r} = \mathbf{p}$, $\mathbf{r} \times \mathbf{p} = \mathbf{k}$, where a, b, care scalar constants, show that $a^2 + b^2 = 1$ and c = 0

ANSWERS

Exercise 6A

1 (a) 3k (b) -2i + 2k(d) i - 3j - 5k(c) 2**k** (e) 10i + 7j + k (f) 0 (g) 4i - 2j + 3k (h) 2i - 5j - 4k(i) 8i - 8j - 8k (j) -8i - 19j - 10k**3** $\frac{1}{7}(3i - 2j + 6k)$ 2 $\frac{1}{\sqrt{2}}(i-j)$ 4 $\frac{7}{\sqrt{3}}(i+j+k)$ 5 $2\sqrt{2}$ **6** (a) -14 (b) -8(i+3j+k)(c) $-\frac{1}{\sqrt{11}}(\mathbf{i}+3\mathbf{j}+\mathbf{k})$ 7 (a) $\sqrt{\frac{14}{15}}$ (b) $\sqrt{\frac{23}{55}}$ (c) $\frac{5\sqrt{3}}{9}$ (d) $\frac{3\sqrt{3}}{14}$ (e) $\frac{\sqrt{7}}{14}$ **8** p = 2, q = -2, $\lambda = 2$ 9 a = -1, b = -1, c = -1; $-\frac{2\sqrt{2}}{3}$

*P4 book page 220 Ex6B Q1,3,5-11,13,14,16

- (1) Find the area of the triangle with vertices A(0, 0, 0), B(1, 2, 1) and C(-1, 3, 3).
- 2 Find the area of the triangle with vertices A(−5, 1, 4), B(0, 0, 0) and C(−2, 3, −1).
- (3) Find the area of the triangle with vertices A(1, -2, 3), B(-1, -1, 4) and C(-2, 1, 5).
- 4 Find the area of the triangle with vertices A(2, −1, −1), B(-2, 1, −3) and C(1, −1, 0).
- 5 Find the area of the triangle with vertices A(-1, 3, 1), B(2, 2, -3)and C(-1, 3, -4).
- 6 Find the area of the parallelogram ABCD where A is the point with coordinates (1, 2, -3), B is the point with coordinates (-1, 3, -4) and D is the point with coordinates (1, 5, -2).

- 7 Find the area of the parallelogram ABCD in which the vertices A, B and D have coordinates (-1, 2, 1), (3, 1, 2) and (5, 1, -6) respectively.
- **8** Find the area of the triangle with vertices A(3, -1, 2), B(1, -1, 3) and C(4, -3, 1).
- 9

Find the volume of the parallelepiped *ABCDEFGH* where the vertices *A*, *B*, *D* and *E* have coordinates (0, 0, 0), (5, -2, 3), (2, -3, 4) and (3, -1, -2) respectively.

10) The points A, B, C, D have position vectors

respectively.

(a) Find $\overrightarrow{AB} \times \overrightarrow{BC}$ and $\overrightarrow{BD} \times \overrightarrow{DC}$.

(b) Hence find

- (i) the area of $\triangle ABC$
- (ii) the volume of the tetrahedron ABCD.

(11) Relative to an origin O, the points P and Q have position vectors p and q respectively, where

 $\mathbf{p} = a(\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ and $\mathbf{q} = a(2\mathbf{i} + \mathbf{j} + 3\mathbf{k})$ and a > 0. Find the area of triangle *OPQ*.

[L]

- 12 Referred to an origin O, the points P and Q have position vectors 3i 3k and i + 2j 7k respectively. Find
 - (a) $\overrightarrow{OP}.\overrightarrow{OQ}$
 - (b) $\overrightarrow{OP} \times \overrightarrow{OQ}$
 - (c) the size, in degrees to 0.1°, of ∠POQ
 - (d) the area of $\triangle OPQ$.
- 13 Referred to O as origin, $\overrightarrow{OA} = 3\mathbf{i} + \mathbf{j} 2\mathbf{k}$, $\overrightarrow{OB} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OC} = -\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$.
 - (a) Show that \overrightarrow{AB} is perpendicular to \overrightarrow{OC} .
 - (b) Find the area of $\triangle OAB$.
 - (c) Calculate the area of $\triangle ABC$.
- 14 The points A(1, -1, -1), B(-1, 1, -1), C(-1, -1, 1) and
 - D(1, 1, 1) are given referred to a fixed origin O.
 - (a) Show that ABCD is a regular tetrahedron.
 - (b) Find the volume of ABCD.
- 15 Find the volume of the tetrahedron with vertices at the points (1, 3, -1), (2, 2, 3), (4, 2, -2) and (3, 7, 4).
- 16 A tetrahedron has its vertices at the points O(0, 0, 0), A(-1, 1, 2), B(1, 2, -1) and C(0, 1, 3).
 - (a) Determine the area of the face ABC.
 - (b) Find a unit vector normal to the face ABC.
 - (c) Find the volume of the tetrahedron.
- 17 Find the volume of the tetrahedron with vertices (0, 1, 0), (0, 0, -4), (2, -1, 3), (2, -1, 2).

- 18 The tetrahedron ABCD has vertices A(1, -1, 0), B(0, 2, -1),C(0, 2, 1), D(-1, 3, 0).
 - (a) Find the area of face BCD.
 - (b) Find the volume of the tetrahedron.
- 19 A tetrahedron OABC has its vertices at the points O(0, 0, 0),
 - A(1, 2, -1), B(-1, 1, 2) and C(2, -1, 1).
 - (a) Write down expressions for \overrightarrow{AB} and \overrightarrow{AC} in terms of i, j and k and find $\overrightarrow{AB} \times \overrightarrow{AC}$.
 - (b) Deduce the area of $\triangle ABC$.
 - [L] (c) Find the volume of the tetrahedron OABC. ٦
- 20 The edges OP, OQ, OR of a tetrahedron OPQR are the vectors a, b and c respectively, where

$$a = 2i + 4j$$

$$b = 2i - j + 3k$$

$$c = 4i - 2j + 5k$$

- (a) Evaluate **b** × **c** and deduce that OP is perpendicular to the plane OQR.
- (b) Write down the length of OP and the area of $\triangle OQR$ and hence the volume of the tetrahedron.
- (c) Verify your result by evaluating $\mathbf{a}.(\mathbf{b} \times \mathbf{c})$. [L]

ANSWERS

Exercise 6B

Ex	ercise 6B				13	(b) $\frac{1}{2}\sqrt{171}$	(c) $\frac{3}{2}\sqrt{133}$
1	$\frac{5\sqrt{2}}{2}$	$2 \frac{13\sqrt{3}}{2}$	$3\frac{\sqrt{11}}{2}$	4 √11	14	(b) $\frac{8}{3}$	15 12
5	$\frac{5\sqrt{10}}{2}$	6 2√14	7 6√34	8 $\frac{\sqrt{21}}{2}$	16	(a) $\frac{3}{2}\sqrt{3}$	(b) $\pm \frac{1}{\sqrt{27}}(i-5j-k)$
9	39			-		(c) $\frac{4}{3}$	¥ # 1
10	(a) 5i – j –	7 k , 2 i – 8j	$+\mathbf{k}$		17	13	
	(b) (i) $\frac{5\sqrt{3}}{2}$	(ii) 19			18	(a) √2	(b) $\frac{2}{3}$
11	a./3	0			19	(a) $-2i - j + 3k$,	$\mathbf{i}-3\mathbf{j}+2\mathbf{k};\ 7\mathbf{i}+7\mathbf{j}+7\mathbf{k}$
	2	(1)				(b) $\frac{7}{2}\sqrt{3}$	(c) $\frac{7}{3}$
12	(a) 24	(b) (51 + 18j +	6 k	20	(a) $i + 2i$	(b) $2\sqrt{5}, \frac{1}{2}\sqrt{5}; \frac{5}{2}$
	(c) 39.7°	(d) 3	3√11			(,,	(0) - (0, 2 (0, 3

*P4 book page 228 Ex6C Q1ab,2ab,3ab,4ab,5ab,6a,7ac,8ac,9-12

I Find, in the form $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0}$, an equation of the straight line passing through the point with position vector \mathbf{a} and which is parallel to the vector \mathbf{b} where:

(a)
$$\mathbf{a} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$$
, $\mathbf{b} = -\mathbf{i} + \mathbf{j} - 2\mathbf{k}$
(b) $\mathbf{a} = \mathbf{i} - 2\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j}$
(c) $\mathbf{a} = \mathbf{i} - 5\mathbf{j} + 2\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$
(d) $\mathbf{a} = \mathbf{i} - \mathbf{j} + 4\mathbf{k}$, $\mathbf{b} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$

 $\mathbf{\hat{z}}$ Find, in the form $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0}$, an equation of the line passing through the points with coordinates

(a)
$$(3, 2, 5), (9, 5, 17)$$

(b) $(1, -2, -1), (2, -4, -4)$

- (c) (-4, -3, 11), (0, -3, 1)
 - (d) (3, -2, 3), (-1, 0, 1)

3 Find an equation, in the form $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0}$, of the line given by the equation, where λ is a scalar:

(a) $\mathbf{r} = \mathbf{i} - \mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + \mathbf{k})$

(b)
$$\mathbf{r} = -\mathbf{i} + 3\mathbf{j} + \mathbf{k} + \lambda(-\mathbf{i} - 3\mathbf{j} - 4\mathbf{k})$$

(c)
$$\mathbf{r} = \mathbf{i} - 4\mathbf{k} + \lambda(2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$$

- (d) $\mathbf{r} = 2\mathbf{i} \mathbf{j} + 3\mathbf{k} + \lambda(-3\mathbf{i} + 2\mathbf{j})$
- Find in the form r.n = p an equation of the plane that passes through the point with position vector a and is perpendicular to the vector n where:

(a)
$$\mathbf{a} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$$
, $\mathbf{n} = 2\mathbf{i} + 4\mathbf{j} - \mathbf{k}$
(b) $\mathbf{a} = 3\mathbf{i} - \mathbf{j} + 4\mathbf{k}$, $\mathbf{n} = -\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$
(c) $\mathbf{a} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{n} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$
(d) $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, $\mathbf{n} = -3\mathbf{i} + \mathbf{k}$
(e) $\mathbf{a} = 4\mathbf{i} - \mathbf{j} + 3\mathbf{k}$, $\mathbf{n} = 6\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$
5 Find a cartesian equation for each of the planes in question 4.

 $\mathbf{6}$ Verify that the point with position vector \mathbf{a} lies in the given plane $(\lambda, \mu \text{ scalars})$ where: (a) $\mathbf{a} = 2\mathbf{j} + \mathbf{k}$, $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} - \mathbf{j} + \mathbf{k}) + \mu(2\mathbf{i} - \mathbf{j} + \mathbf{k})$ (b) $\mathbf{a} = \mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{r} = \mathbf{i} + 3\mathbf{j} - \mathbf{k} + \lambda(-\mathbf{i} + \mathbf{j} - 2\mathbf{k}) + \mu(-\mathbf{i} - \mathbf{j} - \mathbf{k})$ (c) $\mathbf{a} = 24\mathbf{i} + 25\mathbf{j} - 9\mathbf{k}$, $\mathbf{r} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k} + \lambda(7\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}) + \mu(3\mathbf{i} - 4\mathbf{j} + \mathbf{k})$ Find (i) an equation of the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$ (ii) a cartesian equation of the plane passing through the points: $\frac{(a)}{(b)} (1, -1, 1), (2, -4, 3), (0, 1, -3)$ (c) (8, 1, -1), (2, 6, -2), (3, -3, 0) . (d) (2, 0, -3), (1, 4, -1), (2, -1, 0)8 Find a cartesian equation of the plane containing the points: (1, 1, 1), (2, 1, 0), (2, 2, -1)(b) (2, 1, -1), (-2, -1, -5), (0, -4, 3)(C) (1, 1, 2), (3, 4, 1), (-5, 1, -1) (d) $(4, 0, 0), (0, 3, 0), (0, 0, -\frac{1}{2})$ Find the coordinates of the point of intersection of the line l and the plane II where (a) *l*: $\mathbf{r} = \mathbf{i} - 2\mathbf{j} + \mathbf{k} + t(-\mathbf{i} + 2\mathbf{k}), t \text{ scalar}$ Π : **r**. (2i + i + 2k) = 4(b) *l*: $\mathbf{r} = 5\mathbf{i} - 2\mathbf{j} - 3\mathbf{k} + t(2\mathbf{i} - 3\mathbf{j} - 5\mathbf{k}), t$ scalar Π : **r**. (6**i** + 2**j** - 5**k**) = 10 10 Find an equation of the plane, in the form $\mathbf{r} \cdot \mathbf{n} = p$, which contains the line l and the point with position vector a where (a) $l: \mathbf{r} = t(2\mathbf{i} + 3\mathbf{j} - \mathbf{k}), \quad \mathbf{a} = \mathbf{i} + 4\mathbf{k}$ (b) *l*: $\mathbf{r} = 4\mathbf{i} + \mathbf{j} - 2\mathbf{k} + t(-\mathbf{i} + \mathbf{j} + 4\mathbf{k}), \quad \mathbf{a} = -\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ (c) $l: \mathbf{r} = -2\mathbf{i} + 3\mathbf{j} - \mathbf{k} + t(2\mathbf{i} - \mathbf{j} - 3\mathbf{k}), \quad \mathbf{a} = -3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ 11 Find a cartesian equation of the plane which passes through the origin O and contains the line with equations $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ 1

33

12 Referred to an origin O, the points A, B, C have coordinates

- (3, 2, 0), (1, 0, 1), (2, 2, 2) respectively.
- (a) Find a cartesian equation of the plane ABC.
- (b) Show that D(4, 4, 1) lies in the plane.
- (c) Show that AB and DC are parallel.
- (d) Find the coordinates of the point where the lines AC and BD meet.

ANSWERS

Exercise 6C

1 (a) $\mathbf{r} \times (-\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = \mathbf{i} + 3\mathbf{j} + \mathbf{k}$ (b) $\mathbf{r} \times (2\mathbf{i} + 3\mathbf{j}) = 6\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}$ (c) $\mathbf{r} \times (2\mathbf{i} + \mathbf{j} - 3\mathbf{k}) = 13\mathbf{i} + 7\mathbf{j} + 11\mathbf{k}$ (d) $\mathbf{r} \times (3\mathbf{i} - 2\mathbf{j} + \mathbf{k}) = 7\mathbf{i} + 11\mathbf{j} + \mathbf{k}$

2 (a)
$$\left[\mathbf{r} - \begin{pmatrix} 3\\2\\5 \end{pmatrix}\right] \times \begin{pmatrix} 6\\3\\12 \end{pmatrix} = \mathbf{0}$$

(b) $\left[\mathbf{r} - \begin{pmatrix} 1\\-2\\-1 \end{pmatrix}\right] \times \begin{pmatrix} 1\\-2\\-3 \end{pmatrix} = \mathbf{0}$
(c) $\left[\mathbf{r} - \begin{pmatrix} -4\\-3\\11 \end{pmatrix}\right] \times \begin{pmatrix} 4\\0\\-10 \end{pmatrix} = \mathbf{0}$
(d) $\left[\mathbf{r} - \begin{pmatrix} 3\\-2\\3 \end{pmatrix}\right] \times \begin{pmatrix} -4\\2\\-2 \end{pmatrix} = \mathbf{0}$

3 (a)
$$\begin{bmatrix} \mathbf{r} - \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \end{bmatrix} \times \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \mathbf{0}$$

(b) $\begin{bmatrix} \mathbf{r} - \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix} \end{bmatrix} \times \begin{pmatrix} -1 \\ -3 \\ -4 \end{pmatrix} = \mathbf{0}$
(c) $\begin{bmatrix} \mathbf{r} - \begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix} \end{bmatrix} \times \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = \mathbf{0}$
(d) $\begin{bmatrix} \mathbf{r} - \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \end{bmatrix} \times \begin{pmatrix} -3 \\ 2 \\ 0 \end{pmatrix} = \mathbf{0}$
4 (a) $\mathbf{r} \cdot (2\mathbf{i} + 4\mathbf{j} - \mathbf{k}) = -4$
(b) $\mathbf{r} \cdot (-\mathbf{i} + 3\mathbf{i} - 4\mathbf{k}) = -22$

(b)
$$\mathbf{r} \cdot (-\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) = -22$$

(c) $\mathbf{r} \cdot (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) = -22$
(d) $\mathbf{r} \cdot (-3\mathbf{i} + \mathbf{k}) = -4$
(e) $\mathbf{r} \cdot (6\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}) = 14$
5 (a) $2x + 4y - z = -4$
(b) $-x + 3y - 4z = -22$
(c) $2x + 3y - 4z = 11$

(d)
$$-3x + z = -4$$

(e)
$$3x + 2y - z = 7$$

7 (a) (i)
$$\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 2 \\ -4 \end{pmatrix}$$

(ii) $8x + 2y - z = 5$

(b) (i)
$$\mathbf{r} = \begin{pmatrix} 4\\7\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\1 \end{pmatrix} + \mu \begin{pmatrix} -2\\-9\\4 \end{pmatrix}$$

(ii) $17x - 6y - 5z = 31$
(c) (i) $\mathbf{r} = \begin{pmatrix} 8\\1\\-1 \end{pmatrix} + \lambda \begin{pmatrix} -6\\5\\-1 \end{pmatrix} + \mu \begin{pmatrix} -5\\-4\\1 \end{pmatrix}$
(ii) $x + 11y + 49z = -30$
(d) (i) $\mathbf{r} = \begin{pmatrix} 2\\0\\-3 \end{pmatrix} + \lambda \begin{pmatrix} -1\\4\\2 \end{pmatrix} + \mu \begin{pmatrix} 0\\-1\\3 \end{pmatrix}$
(ii) $14x + 3y + z = 25$
8 (a) $x + y + z = 3$
(b) $7x - 6y - 4z = 12$
(c) $3x - 4y - 6z + 13 = 0$
(d) $3x + 4y - 24z = 12$
9 (a) $(0, -2, 3)$ (b) $(3, 1, 2)$
10 (a) $\mathbf{r} \cdot (4\mathbf{i} - 3\mathbf{j} - \mathbf{k}) = 0$
(b) $\mathbf{r} \cdot \begin{pmatrix} 4\\-16\\5 \end{pmatrix} = -10$
(c) $\mathbf{r} \cdot \begin{pmatrix} 9\\3\\5 \end{pmatrix} = -14$
11 $x - 2y + z = 0$
12 (a) $4x - 3y + 2x = 6$
(d) $(2\frac{1}{2}, 2, 1)$

A Find the distance from the origin to the plane with equation: (a) $\mathbf{r} \cdot (2\mathbf{i} + \mathbf{j} - 3\mathbf{k}) = 5$ (b) $\mathbf{r} \cdot (-3\mathbf{i} + \mathbf{j} + 6\mathbf{k}) = 24$ (c) $\mathbf{r} \cdot (5\mathbf{i} - 10\mathbf{j} + 4\mathbf{k}) = 17$

(d) $\mathbf{r} \cdot (3\mathbf{i} + 12\mathbf{j} - 4\mathbf{k}) = 62$

(c)
$$x - y + 2z = 15$$

2 Find the distance from the given point to the given plane:

(a)
$$(1, 2, -3)$$
, $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) = 23$
(b) $(1, -3, 2)$, $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + 3\mathbf{k}) = 46$
(c) $(4, 1, -7)$, $2x + 6y - 3z = 14$
(d) $(1, -3, 5)$, $\mathbf{r} \cdot (4\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}) = 10$
(e) $(4, -8, -1)$, $4x + y - 7z = 42$

Find the position vector of the point where the line with equation $\mathbf{r} = \mathbf{i} + \mathbf{j} - 2\mathbf{k} + \lambda(\mathbf{i} + 5\mathbf{k})$ cuts the plane with equation $\mathbf{r} \cdot (2\mathbf{i} + \mathbf{j} - \mathbf{k}) = 2$.

4 Find, in degrees to 0.1°, the acute angle between the given line and plane:

(a) $\mathbf{r} = \mathbf{i} - 2\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} - 3\mathbf{k})$ and $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + 4\mathbf{k}) = 10$ (b) $\mathbf{r} = 3\mathbf{i} + \mathbf{j} - \mathbf{k} + \lambda(4\mathbf{i} - 7\mathbf{k})$ and $\mathbf{r} \cdot (-\mathbf{i} + 4\mathbf{j} - 6\mathbf{k}) = 24$ (c) $\mathbf{r} = -6\mathbf{i} + 2\mathbf{j} - 4\mathbf{k} + \lambda(-2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$ and $\mathbf{r} \cdot (2\mathbf{i} - 6\mathbf{j} + 5\mathbf{k}) = 63$

5 Find, in degrees to 0.1°, the angle between the planes with equations:

(a)
$$\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) = 3$$
 and $\mathbf{r} \cdot (2\mathbf{i} + 2\mathbf{j} - \mathbf{k}) = 6$
(b) $\mathbf{r} \cdot (\mathbf{i} - \mathbf{j} - \sqrt{2\mathbf{k}}) = 5$ and $\mathbf{r} \cdot (7\mathbf{j} + \mathbf{k}) = 10$
(c) $x - 2y - 5z = 7$ and $3x + 7y - z = 4$

- **6** Find the distance from the origin to the plane with equation $\mathbf{r} \cdot (2\mathbf{i} 2\mathbf{j} + \mathbf{k}) = 6.$
- Find the cosine of the acute angle between the planes with equations 2x + 3y 4z = 5 and 6x 2y 3z = 4.

- 8 Find a vector equation of the line of intersection of the planes with equations:
- (a) $\mathbf{r} \cdot (2\mathbf{i} + \mathbf{j} 3\mathbf{k}) = 28$ and $\mathbf{r} \cdot (4\mathbf{i} 7\mathbf{j} + \mathbf{k}) = 31$ (b) x + 6y + z = -10, 3x + 2y - z = -1(c) $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = -5$ and $\mathbf{r} \cdot (2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) = 15$
- **9** Find, in degrees to 0.1°, the acute angle between the planes with equations 3x + 4y + 2z = 7 and 2x 3y + z = 9.
- 10 Find the distance of the origin from the plane with equation $\mathbf{r} \cdot (3\mathbf{i} 4\mathbf{j} 12\mathbf{k}) = 26$.
- (a) Find, in cartesian form, the equation of the plane Π which passes through the origin and contains the line with equations

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$

(b) Find, in degrees to 0.1°, the acute angle between Π and the plane with equation

$$4x + y - z = 3$$

12 A line has equation

$$\mathbf{r} = 3\mathbf{i} - 5\mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} - 4\mathbf{j} + \mathbf{k})$$

and a plane has equation

$$\mathbf{r.}(\mathbf{3i} - \mathbf{j} - \mathbf{5k}) = 1$$

Find the acute angle between the line and the plane.

13 The planes with equations

2x - y + 3z + 3 = 0 and x + 10y = 21

meet in a line L.

The planes with equations

2x - y = 0 and 7x + z = 6

meet in a line M.

Show that L and M meet at a point. Show further that L and M both lie in the plane with equation x + 3y + z = 6.

14 Referred to a fixed origin O, the lines l_1 and l_2 have equations

$$\mathbf{r} = 3\mathbf{i} + 6\mathbf{j} + \mathbf{k} + s(2\mathbf{i} + 3\mathbf{j} - \mathbf{k})$$
$$\mathbf{r} = 3\mathbf{i} - \mathbf{j} + 4\mathbf{k} + t(\mathbf{i} - 2\mathbf{j} + \mathbf{k})$$

and.

respectively, where s and t are scalar parameters.

- (a) Show that l_1 and l_2 intersect and determine the position vector of their point of intersection.
- (b) Show that the vector $-\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$ is perpendicular to both l_1 and l_2 .
- (c) Find, in the form r.n = p, an equation of the plane containing l₁ and l₂.

[L]

[L]

15 With respect to the origin O the points A, B, C have position vectors

```
5i - j - 3k, -4i + 4j - k, 5i - 2j + 11k
```

respectively. Find

(a) a vector equation for the line BC

- (b) a vector equation for the plane OAB
- (c) the cosine of the acute angle between the lines OA and OB.

Obtain, in the form $\mathbf{r.n} = p$, a vector equation for Π , the plane which passes through A and is perpendicular to BC.

Find cartesian equations for

- (d) the plane Π
- (e) the line BC.

16 Show that

 $\mathbf{r} = \mathbf{a} + s(\mathbf{b} - \mathbf{a}) + t(\mathbf{c} - \mathbf{a})$

is an equation of the plane which passes through the noncollinear points whose position vectors are **a**, **b**, **c**, where **r** is the position vector of a general point on the plane and *s* and *t* are scalars. Find a cartesian equation of the plane containing the points (1, 1, -1), (2, 0, 1) and (3, 2, 1), and show that the points (2, 1, 2) and (0, -2, -2) are equidistant from, and on opposite sides of, this plane. [L] A plane passes through the three points A, B, C whose position vectors, referred to an origin O, are $(\mathbf{i} + 3\mathbf{j} + 3\mathbf{k})$, $(3\mathbf{i} + \mathbf{j} + 4\mathbf{k})$, $(2\mathbf{i} + 4\mathbf{j} + \mathbf{k})$ respectively. Find, in the form $(l\mathbf{i} + m\mathbf{j} + n\mathbf{k})$, a unit vector normal to this plane. Find also a cartesian equation of the plane, and the perpendicular distance from the origin to this plane. [L]

18 Show that the vector $\mathbf{i} + \mathbf{k}$ is perpendicular to the plane with vector equation

$$\mathbf{r} = \mathbf{i} + s\mathbf{j} + t(\mathbf{i} - \mathbf{k})$$

Find the perpendicular distance from the origin to this plane. Hence, or otherwise, obtain a cartesian equation of the plane. [L]

Three planes have equations

$$x - 6y - z = 5$$

$$3x + 2y + z = -1$$

$$5x + pz = q$$

Show that

- (a) the planes have a common point of intersection unless p = 1
- (b) when p = 1, q = 2, the planes intersect in pairs in three parallel lines
- (c) when p = 1, q = 1, the planes have a common line of intersection.

Give equations for the line of intersection in (c).

20 Show that the lines l_1 , l_2 , with vector equations

$$\mathbf{r} = 5\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} + \lambda(-3\mathbf{i} + \mathbf{j} - \mathbf{k})$$

$$\mathbf{r} = 10\mathbf{i} - 3\mathbf{j} + 6\mathbf{k} + \mu(4\mathbf{i} - \mathbf{j} + 2\mathbf{k})$$

respectively, intersect and find a vector equation of the plane Π containing l_1 and l_2 .

Show that the point Q with position vector $(6\mathbf{i} + 7\mathbf{j} - 2\mathbf{k})$ lies on the line which is perpendicular to Π and which passes through the intersection of l_1 and l_2 . Find a vector equation of the plane which passes through Q and is parallel to Π . [L]

[L]

21 With respect to a fixed origin O, the straight lines l_1 and l_2 are given by

 $l_1 : \mathbf{r} = \mathbf{i} - \mathbf{j} + \lambda(2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ $l_2 : \mathbf{r} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \mu(-3\mathbf{i} + 4\mathbf{k})$

where λ and μ are scalar parameters.

- (a) Show that the lines intersect.
- (b) Find the position vector of their point of intersection.
- (c) Find the cosine of the acute angle contained between the lines.
- (d) Find a vector equation of the plane containing the lines. [L]
- 22 The position vectors of the points A, B, C are a, b and c respectively, where

a = -2i + j, b = i + 2j - 2k, c = 5j - 4k

- (a) Find (b − a) × (c − a) and hence, or otherwise, find an equation of the plane ABC in the form r.n = p and the area of the triangle ABC.
- (b) Find a vector equation of the plane which passes through A and which is perpendicular to both the plane ABC and the plane with equation $(\mathbf{r} \mathbf{a}) \cdot \mathbf{b} = 0$.
- (c) Find the cartesian equations of the line BC. [L]

23/Planes Π_1 and Π_2 have equations given by

 $\Pi_1 : \mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + \mathbf{k}) = 0$ $\Pi_2 : \mathbf{r} \cdot (\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}) = 1$

- (a) Show that the point A(2, -2, 3) lies in Π_2 .
- (b) Show that Π_1 is perpendicular to Π_2 .
- (c) Find, in vector form, an equation of the straight line through A which is perpendicular to Π_1 .
- (d) Determine the coordinates of the point where this line meets Π_1 .
- (e) Find the perpendicular distance of A from Π_1 .
- (f) Find a vector equation of the plane through A parallel to Π_1 . [L]
- 24 Show that the line with equations

$$\frac{x-4}{1} = \frac{y-5}{2} = \frac{z-6}{3}$$

and the line with equations

$$\frac{x-1}{4} = \frac{y-2}{5} = \frac{z-3}{6}$$

intersect.

Find an equation for the plane in which they lie and the coordinates of their point of intersection. [L]

ANSWERS

Exercise 6D 1 (a) $\frac{5}{14}\sqrt{14}$ 17 $\frac{1}{5\sqrt{2}}(3\mathbf{i}+5\mathbf{j}+4\mathbf{k}); 3x+5y+4z=30; 3\sqrt{2}$ (b) $\frac{12}{23}\sqrt{46}$ (c) $\frac{17}{141}\sqrt{141}$ (d) $\frac{62}{13}$ (e) $\frac{5}{2}\sqrt{6}$ 18 $\frac{1}{2}\sqrt{2}$; x + z = 1**2** (a) $\frac{5}{2}\sqrt{6}$ $(b) \frac{5}{2} \sqrt{14}$ (c) 3 **19** (c) $\frac{x}{1} = \frac{y+1}{1} = \frac{z-1}{-5}$ (e) $\frac{9}{22}\sqrt{66}$ (d) $3\frac{1}{3}$ 3 2i + j + 3k**4** (a) 46.4° (b) 40.3° (c) 67.1° 5 (a) 27.3° (b) 53.5° (c) 81.8° $7 \frac{18\sqrt{29}}{203}$ **20** $\mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} + s \begin{pmatrix} -3 \\ 1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}$ 62 $\mathbf{r} = \begin{pmatrix} 6\\7\\-2 \end{pmatrix} + p \begin{pmatrix} -3\\1\\-1 \end{pmatrix} + q \begin{pmatrix} 4\\-1\\2 \end{pmatrix}$ 8 (a) $\mathbf{r} = \frac{121}{14}\mathbf{i} - \frac{25}{7}\mathbf{k} + \lambda(\frac{10}{7}\mathbf{i} + \mathbf{j} + \frac{9}{7}\mathbf{k})$ (b) $\mathbf{r} = -\frac{11}{\Re}\mathbf{j} - \frac{2}{4}\mathbf{k} + \lambda(\mathbf{i} - \frac{1}{2}\mathbf{j} + 2\mathbf{k})$ **21** (b) 7i + 2j - 6k(c) $\frac{14}{15}$ (c) $\mathbf{r} = 20\mathbf{i} - 25\mathbf{k} + \lambda(5\mathbf{i} + \mathbf{j} - 7\mathbf{k})$ 9 78.5° (d) $\mathbf{r} = \begin{pmatrix} 7\\2\\-6 \end{pmatrix} + s \begin{pmatrix} 2\\1\\-2 \end{pmatrix} + t \begin{pmatrix} -3\\0\\4 \end{pmatrix}$ 10 2 **11** (a) x - 2y + z = 0 (b) 84.5° 12 10.6° 14 (a) i + 3j + 2k**22** (a) $4\mathbf{i} + 8\mathbf{j} + 10\mathbf{k}$; $\mathbf{r} \cdot \begin{pmatrix} 4 \\ 8 \\ 10 \end{pmatrix} = 0$; $3\sqrt{5}$ (c) $\mathbf{r} \cdot \begin{pmatrix} -1 \\ 3 \\ 7 \end{pmatrix} = 22$ (b) $\mathbf{r} = \begin{pmatrix} -2\\1\\0 \end{pmatrix} + s \begin{pmatrix} 4\\8\\10 \end{pmatrix} + t \begin{pmatrix} 1\\2\\2 \end{pmatrix}$ **15** (a) $\mathbf{r} = \begin{pmatrix} -4 \\ 4 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$ (c) $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+2}{2}$ (= λ) (b) $\mathbf{r} = s \begin{pmatrix} 5 \\ -1 \\ -3 \end{pmatrix} + t \begin{pmatrix} -4 \\ 4 \\ -1 \end{pmatrix}$ **23** (c) $\mathbf{r} = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ (d) $\left(-1, -\frac{1}{2}, 1\frac{1}{2}\right)$ (e) $\frac{3}{2}\sqrt{6}$ (c) $\sqrt{\frac{21}{55}}$; **r**. $\begin{pmatrix} 3\\ -2\\ 4 \end{pmatrix} = 5$ (f) $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = 9$ (d) 3x - 2y + 4z = 5(e) $\frac{x+4}{3} = \frac{y-4}{2} = \frac{z+1}{4}$ **24** $\mathbf{r} = \begin{pmatrix} 5\\7\\9 \end{pmatrix} + s \begin{pmatrix} 1\\2\\3 \end{pmatrix} + t \begin{pmatrix} 4\\5\\6 \end{pmatrix}; (5, 7, 9)$ 16 4x - 2y - 3z = 5

-P3 Book p166 Ex7A Q1ace,2ace,3ace,4,5ace,7ace,8ace,9ace,11,12 (*AS)

Exercise 7A

1 Express in terms of i:
(a)
$$\sqrt{(-64)}$$
 (b) $\sqrt{(-7)}$ (c) $\sqrt{16} - \sqrt{(-81)}$
(d) $3 - \sqrt{(-25)}$ (e) $\sqrt{(-100)} - \sqrt{(-49)}$
2 Simplify:
(a) i^3 (b) i^7 (c) i^{-9}
(d) $i(2i - 3i^3)$ (e) $(i + 2i^2)(3 - i)$
3 Write in the form $a + ib$, where $a, b \in \mathbb{R}$:
(a) $2i(5 - 2i)$ (b) $(2 + i)^2$ (c) $(4 - i)^5$
(d) $(1 + 2i)^2 + (3 - i)^3$ (e) $(1 + i)^2 - 3(2 - i)^3$
4 Find z^* given that $z =$
(a) $2 + 4i$ (b) $3 - 6i$ (c) $-5 + 2i$
(d) $-7 - 3i$ (e) $2i - 4$ (f) 6
(g) $3i$ (h) $-3i + 7$
5 Simplify:
(a) $(2 + 3i) + (4 - 7i)$ (b) $(-3 + 5i) + (-6 - 7i)$
(c) $(-7 - 10i) + (2 - 3i)$ (d) $(2 + 4i) - (3 - 6i)$
(e) $(-3 + 5i) - (-7 + 4i)$ (f) $(-9 - 6i) - (-8 - 9i)$
(g) $(6 - 3i) - (8 - 5i)$
6 Express in the form $a + ib$, where $a, b \in \mathbb{R}$:
(a) $(2 + i)(3 - i)$ (b) $(-3 - 4i)(2 - 7i)$
(c) $(5 + 2i)(-3 + 4i)$ (d) $(1 - 5i)^2$
(e) $(2 - i)^3$ (f) $(1 + i)(2 - i)(i + 3)$
(g) $i(3 - 7i)(2 - i)$
7 Express in the form $a + ib$, where $a, b \in \mathbb{R}$:
(a) $\frac{2 - 7i}{1 + 2i}$ (b) $\frac{1 + 2i}{3 - i}$ (c) $\frac{1 + 2i}{3 + 4i}$
(d) $\frac{1}{1 + 2i}$ (e) $\frac{2 + 3i}{2 - 3i}$ (f) $\frac{5 + i}{i - 3}$
(g) $\frac{6}{4i - 3}$ (h) $\frac{1}{(i + 2)(1 - 2i)}$

÷.

8 Solve:

(a) $x^2 + 25 = 0$ (b) $x^3 + 64x = 0$ (c) $x^2 - 4x + 5 = 0^{-1}$ (d) $x^2 + 6x + 10 = 0$ (e) $x^2 + 29 = 4x$ (f) $2x^2 + 3x + 7 = 0$ (g) $3x^2 + 2x + 1 = 0$ (h) $3x^2 - 2x + 2 = 0$ 9 Express in the form a + ib, where $a, b \in \mathbb{R}$:

(a)
$$\frac{1}{1+2i} + \frac{1}{1-2i}$$
 (b) $\frac{1}{2+i} - \frac{1}{1+5i}$
(c) $5-4i + \frac{5}{3-4i}$

- 10 Given that z = -1 + 3i, express $z + \frac{2}{z}$ in the form a + ib, where $a, b \in \mathbb{R}$.
- 11 Given that $T = \frac{x iy}{x + iy}$, where x, y, $T \in \mathbb{R}$, show that

$$\frac{1+T^2}{2T} = \frac{x^2 - y^2}{x^2 + y^2}$$

12 Show that the complex number 2+3i/5+i can be expressed in the form λ(1+i), where λ is real.
State the value of λ.

Hence, or otherwise, show that $\left(\frac{2+3i}{5+i}\right)^4$ is real and determine its value. [L]

<u>ANSWERS</u>

Exercise 7A

1	(a) 8i (b) $i\sqrt{7}$ (c) $4-9i$
	(d) $3 - 5i$ (e) $3i$
2	(a) -i (b) -i (c) -i
	(d) -5 (e) $-5 + 5i$
3	(a) $4 + 10i$ (b) $3 + 4i$
	(c) $404 - 1121i$ (d) $15 - 22i$
	(e) $-6 + 35i$
4	(a) $2-4i$ (b) $3+6i$ (c) $-5-2i$
	(d) $-7 + 3i$ (e) $-4 - 2i$ (f) 6
	(g) $-3i$ (h) $7 + 3i$
5	(a) $6-4i$ (b) $-9-2i$
	(c) $-5 - 13i$ (d) $-1 + 10i$
	(e) $4 + i$ (f) $-1 + 3i$
	(g) $-2 + 2i$
6	(a) $7+1$ (b) $-34+34i$
	(c) $-23 + 141$ (d) $-24 - 101$
	(e) $2 - 111$ (f) $8 + 61$
7	(g) $1/-1$
/	(a) $-\frac{1}{5}(12 + 111)$ (b) $\frac{1}{10}(1 + 71)$ (c) $\frac{1}{5}(11 + 2i)$ (d) $\frac{1}{10}(1 + 7i)$
	(c) $\frac{1}{25}(11+21)$ (d) $\frac{1}{5}(1-21)$ (e) $\frac{1}{5}(-5+12i)$ (f) $-\frac{1}{7}(7+4i)$
	(c) $\frac{1}{13}(-5+12i)$ (l) $-\frac{1}{5}(7+4i)$ (g) $-\frac{6}{5}(3+4i)$ (h) $\frac{1}{5}(4+3i)$
8	(a) $+5i$ (b) $0 +8i$ (c) $2+i$
Ŭ	(d) $-3 \pm i$ (e) $2 \pm 5i$ (c) 2 ± 1
	(f) $\frac{1}{4}(-3 \pm i\sqrt{47})$
	(g) $\frac{1}{2}(-1 \pm i\sqrt{2})$ (h) $\frac{1}{2}(1 \pm i\sqrt{5})$
9	(a) $\frac{2}{5}$ (b) $\frac{1}{130}(47 - i)$ (c) $\frac{4}{5}(7 - 4i)$
10	$-\frac{6}{5}(1-2i)$
12	$\lambda = \frac{1}{2}; -\frac{1}{4}$

Exercise 7C

- 1 Find the square roots of:
 - (a) 5 + 12i (b) 7 24i (c) 3 4i
 - (d) -20i (e) $1 i4\sqrt{3}$
- 2 Find the real numbers x and y given that:

(a)
$$x + 4y + xyi = 12 - 16i$$

- (b) 2x + (x 2y)i = 18 y i
- (c) 3x + 2xi = 7 + 2y + (12 + 5y)i
- (d) x 7y + 8xi = 6y + (6y 100)i
- (e) 2x y + (y 4)i = 0
- 3 Given that (1 + 5i)A 2B = 3 + 7i, find A and B if: (a) A and B are real,
 - (b) A and B are conjugate complex numbers.
- **4** Given that $x, y \in \mathbb{R}$ and

$$(x + iy)(2 + i) = 3 - i$$

find x and y.

8 Given that

$$\frac{1}{x + iy} + \frac{1}{1 + 2i} = 1$$

where x and y are real, find x and y.

[L]

ANSWERS

Exercise 7C

1 (a) $\pm (3+2i)$ (b) $\pm (4-3i)$ (c) $\pm (2-i)$ (d) $\pm \sqrt{10(1-i)}$ (e) $\pm (2-i\sqrt{3})$ 2 (a) (-4,4), (16,-1)(b) (7,4) (c) (1,-2)(d) $(-\frac{650}{49}, -\frac{50}{49})$ (e) (2,4)3 (a) $A = \frac{7}{5}, B = -\frac{4}{5}$ (b) A = 2 - i, B = 2 + i4 x = 1, y = -15 (a) p = 3, q = 1 (b) $p = -\frac{2}{5}, q = \frac{6}{5}$ 6 $x = -\frac{7}{25}, y = -\frac{24}{25}$ 7 $x = \frac{2}{13}, y = \frac{3}{13}$ 8 $x = 1, y = -\frac{1}{2}$ 9 $a = 0, b = \pm 2$

Exercise (1F)

$1 \ f(z) = z^3 - 6z^2 + 21z - 26$	
a Show that $f(2) = 0$.	(1 mark)
b Hence solve $f(z) = 0$ completely.	(3 marks)
2 $f(z) = 2z^3 + 5z^2 + 9z - 6$	
a Show that $f(\frac{1}{2}) = 0$.	(1 mark)
b Hence write $f(z)$ in the form $(2z - 1)(z^2 + bz + c)$, where b and c are real constants	(I mark)
to be found.	(2 marks)
c Use algebra to solve $f(z) = 0$ completely.	(2 marks)
3 $g(z) = 2z^3 - 4z^2 - 5z - 3$	
Given that $z = 3$ is a root of the equation $g(z) = 0$, solve $g(z) = 0$ completely.	(4 marks)
4 $p(z) = z^3 + 4z^2 - 15z - 68$	
Given that $z = -4 + i$ is a solution to the equation $p(z) = 0$,	
a show that $z^2 + 8z + 17$ is a factor of $p(z)$.	(2 marks)
b Hence solve $p(z) = 0$ completely.	(2 marks)
5 $f(z) = z^3 + 9z^2 + 33z + 25$	
Given that $f(z) = (z + 1)(z^2 + az + b)$, where a and b are real constants,	
a find the value of <i>a</i> and the value of <i>b</i>	(2 marks)
b find the three roots of $f(z) = 0$	(4 marks)
c find the sum of the three roots of $f(z) = 0$.	(1 mark)
6 $g(z) = z^3 - 12z^2 + cz + d = 0$, where $c, d \in \mathbb{R}$.	
Given that 6 and 3 + i are roots of the equation $g(z) = 0$,	
a write down the other complex root of the equation	(1 mark)
b find the value of <i>c</i> and the value of <i>d</i> .	(4 marks)
7 $b(z) = 2z^3 + 2z^2 + 2z + 1$	
$f(z) = 2z^2 + 3z^2 + 3z + 1$ Given that $2z + 1$ is a factor of $h(z)$ find the three roots of $h(z) = 0$	(A marka)
Siven that $22 + 1$ is a factor of $n(2)$, find the three roots of $n(2) = 0$.	(4 marks)
8 $I(z) = z^3 - 6z^2 + 28z + k$	
Given that $I(2) = 0$,	(1
a find the other two roots of the equation	(1 mark)
b find the other two roots of the equation.	(4 marks)
9 Find the four roots of the equation $z^4 - 16 = 0$.	
10 $f(z) = z^4 - 12z^3 + 31z^2 + 108z - 360$	
a Write $f(z)$ in the form $(z^2 - 9)(z^2 + bz + c)$, where b and c are real constants	
b. Hence find all the solutions to $f(z) = 0$	(2 marks)
b Thence find an the solutions to $I(z) = 0$.	(3 marks)

11 $g(z) = z^4 + 2z^3 - z^2 + 38z + 130$

Given that g(2 + 3i) = 0, find all the roots of g(z) = 0.

12 $f(z) = z^4 - 10z^3 + 71z^2 + Qz + 442$, where Q is a real constant.

Given that z = 2 - 3i is a root of the equation f(z) = 0,

- **a** show that $z^2 6z + 34$ is a factor of f(z)
 - **b** find the value of Q
 - **c** solve completely the equation f(z) = 0.

<u>ANSWERS</u>

Exercise 1F

1	a	f(2) = 8 - 24 + 42 - 26 = 0
	b	z = 2, z = 2 + 3i or $z = 2 - 3i$
2	a	Substitute $z = \frac{1}{2}$ into $f(z)$.
	b	b = 3, c = 6
	С	$z = \frac{1}{2}$, or $z = -\frac{3}{2} \pm \frac{\sqrt{15}}{2}$ i
3	3,	$-\frac{1}{2}+\frac{1}{2}i$ and $-\frac{1}{2}-\frac{1}{2}i$
4	a	$(z^2 - (-4 + i))(z^2 - (-4 - i)) = z^2 + 8z + 16 + 1$
		$= z^2 + 8z + 17$
	b	z = 4, z = -4 + i or z = -4 - i
5	a	a = 8, b = 25 b $-1, -4 + 3i, -4 - 3i$ c -9
6	a	3 - i b $c = 46, d = -60$
7	$-\frac{1}{2}$	$\frac{1}{2} + \frac{\sqrt{3}}{2}i$ and $\frac{1}{2} - \frac{\sqrt{3}}{2}i$
0	6	
0	a	$\kappa = -40$ b $2 - 41, 2 + 41$
9	2, •	-2, 2i and – 2i
10	a	$(z^2 - 9)(z^2 - 12z + 40)$ b $z = \pm 3, 6 \pm 2i$
11	-3	i + i, -3 - i, 2 + 3i and $2 - 3i$
	(z	$(2 - 3i)(z - (2 + 3i)) = z^2 - 4z + 13$
12	a	$(z^2 - 4z + 13)(z^2 + bz + c)$
		$= z^4 - 10z^3 + 71z^2 + Qz + 442$

b = -6, c = 34b = -214 c = 2 + 3i, 2 - 3i, 3 + 5i or 3 - 5i (4 marks)

(1 mark) (2 marks)

-Edexcel Book Mixed Exercise 1

Mixed exercise 1

- 1 Given that $z_1 = 8 3i$ and $z_2 = -2 + 4i$, find, in the form a + bi, where $a, b \in \mathbb{R}$: a $z_1 + z_2$
 - **b** $3z_2$
 - **c** $6z_1 z_2$
- 2 The equation z² + bz + 14 = 0, where b ∈ ℝ has no real roots.
 Find the range of possible values of b. (3 marks)
 - 3 The solutions to the quadratic equation $z^2 6z + 12 = 0$ are z_1 and z_2 . Find z_1 and z_2 , giving each answer in the form $a \pm i\sqrt{b}$.
-) 4 By using the binomial expansion, or otherwise, show that $(1 + 2i)^5 = 41 38i$. (3 marks)
- 5 $f(z) = z^2 6z + 10$ Show that z = 3 + i is a solution to f(z) = 0. (2 marks)
- 6 $z_1 = 4 + 2i, z_2 = -3 + i$ Express, in the form a + bi, where $a, b \in \mathbb{R}$:
 - **a** z_1^* **b** $z_1 z_2$ **c** $\frac{z_1}{z_2}$
- 7 Write $\frac{(7-2i)^2}{1+i\sqrt{3}}$ in the form x + iy where $x, y \in \mathbb{R}$.
- 8 Given that $\frac{4-7i}{z} = 3 + i$, find z in the form a + bi, where $a, b \in \mathbb{R}$. (2 marks)
- 9 $z = \frac{1}{2+i}$

Express in the form a + bi, where $a, b \in \mathbb{R}$:

a z^2 **b** $z - \frac{1}{z}$

10	Given that $z = a + bi$, show that $\frac{z}{z^*} = \left(\frac{a^2 - b^2}{a^2 + b^2}\right) + \left(\frac{2ab}{a^2 + b^2}\right)i$	(4 marks)
11	The complex number z is defined by $z = \frac{3+qi}{a-5i}$, where $q \in \mathbb{R}$.	
	Given that the real part of z is $\frac{1}{13}$, a find the possible values of q b write the possible values of z in the form $a + bi$, where a and b are real constants	(4 marks) (1 mark)
12	Given that $z = x + iy$, find the value of x and the value of y such that $z + 4iz^* = -3 + $ where z^* is the complex conjugate of z.	(1 mark) 18i (5 marks)
13 14	z = 9 + 6i, $w = 2 - 3iExpress \frac{z}{w} in the form a + bi, where a and b are real constants.The complex number z is given by z = \frac{q + 3i}{4 + qi} where q is an integer.$	
	Express z in the form $a + bi$ where a and b are rational and are given in terms of q.	(4 marks)
15	 Given that 6 - 2i is one of the roots of a quadratic equation with real coefficients, a write down the other root of the equation b find the quadratic equation, giving your answer in the form z² + bz + c = 0 where b and c are real constants. 	(1 mark) (2 marks)
16	Given that $z = 4 - ki$ is a root of the equation $z^2 - 2mz + 52 = 0$, where k and m are positive real constants, find the value of k and the value of m.	(4 marks)
17	$h(z) = z^3 - 11z + 20$ Given that 2 + i is a root of the equation $h(z) = 0$, solve $h(z) = 0$ completely.	(4 marks)
18	$f(z) = z^3 + 6z + 20$ Given that $f(1 + 3i) = 0$, solve $f(z) = 0$ completely.	(4 marks)
19	$f(z) = z^3 + 3z^2 + kz + 48, k \in \mathbb{R}$ Given that $f(4i) = 0$, a find the value of k b find the other two roots of the equation.	(2 marks) (3 marks)
20	 f(z) = z⁴ - z³ - 16z² - 74z - 60 a Write f(z) in the form (z² - 5z - 6)(z² + bz + c), where b and c are real constants to be found. b Hence find all the solutions to f(z) = 0. 	(2 marks) (3 marks)
21	$g(z) = z^{4} - 6z^{3} + 19z^{2} - 36z + 78$ Given that $g(3 - 2i) = 0$, find all the roots of $g(z) = 0$.	(4 marks)
22	$f(z) = z^4 - 2z^3 - 5z^2 + pz + 24$ Given that $f(4) = 0$,	
	 a find the value of p b solve completely the equation f(z) = 0. 	(1 mark) (5 marks)

ANSWERS

Mixed exercise

b -6 + 12i **c** 50 - 22i **a** 6+i 1 2 $-2\sqrt{14} < b < 2\sqrt{14}$ 3 3 + $i\sqrt{3}$, 3 - $i\sqrt{3}$ $(1 + 2i)^5$ 4 $= 1^{5} + 5(1)^{4}(2i) + 10(1)^{3}(2i)^{2} + 10(1)^{2}(2i)^{3} + 5(1)(2i)^{4} + (2i)^{5}$ $= 1 + 10i + 40i^{2} + 80i^{3} + 80i^{4} + 32i^{5}$ = 1 + 10i - 40 - 80i + 80 + 32i= 41 - 38iSubstitute z = 3 + i into f(z) to get f(z) = 0. 5 **b** -14 - 2i c -1 - i**a** 4 – 2i 6 $\frac{45 - 28i(1 - i\sqrt{3})}{(1 + \sqrt{3}i)(1 - \sqrt{3}i)} = \frac{45 - 28\sqrt{3}}{4} + \left(\frac{-45\sqrt{3} - 28}{4}\right)i$ $8 \quad \frac{4-7i}{3+i} = \frac{(4-7i)(3-i)}{(3+i)(3-i)} = \frac{12-25i+7i^2}{10} = \frac{1}{2} - \frac{5}{2}i$ **b** $\frac{-8}{5} - \frac{6}{5}$ 9 a $\frac{3}{25} - \frac{4}{25}i$ 10 $\frac{z}{z^*} = \frac{(a+bi)(a+bi)}{(a-bi)(a+bi)} = \frac{a^2+2abi+b^2i^2}{a^2-b^2i^2}$ $=\frac{a^2-b^2}{a^2+b^2}+\left(\frac{2ab}{a^2+b^2}\right)i$ 11 a $\frac{3+qi}{q-5i} \times \frac{q+5i}{q+5i} = \frac{3q-5q}{q^2+25} + \frac{q^2+15}{q^2+25}i$ $\frac{-2q}{q^2+25} = \frac{1}{13} \Rightarrow q^2 + 26q + 25 = 0 \Rightarrow q = -1, q = -25$ **b** $\frac{1}{13} + \frac{8}{13}i, \frac{1}{13} + \frac{64}{65}i$ 12 x + yi + 4i(x - yi) = -3 + 18i(x + 4y) + (4x + y)i = -3 + 18i $x + 4y = -3, 4x + y = 18 \Rightarrow x = 5, y = -2$ **13** $\frac{(9+6i)(2+3i)}{(2-3i)(2+3i)} = \frac{18+39i+18i^2}{4-9i^2} = 3i$ 14 $\frac{(q+3i)(4-qi)}{(4+qi)(4-qi)} = \frac{7q}{q^2+16} + \frac{12-q^2}{q^2+16}i$ 15 a 6 + 2i 16 k = 6, m = 417 z = 2 + i, 2 - i or -418 z = -2, 1 + 3i or 1 - 3i**b** -4i and -3 19 a k = 16**20** a b = 4, c = 10 b $z = 6, -1, -2 + \sqrt{6}i$ or $-2 - \sqrt{6}i$ **21** 3 – 2i, 3 + 2i, $i\sqrt{6}$ and $-i\sqrt{6}$ **b** 1, 4, $-\frac{3}{2} + \frac{\sqrt{15}}{2}$ i and $-\frac{3}{2} - \frac{\sqrt{15}}{2}$ i 22 a p = -18

using GeoGebra.

Exercise 2A

- 1 Show these numbers on an Argand diagram.
- a 7 + 2i b 5 4i c -6 i d -2 + 5i

 e 3i f $\sqrt{2} + 2i$ g $-\frac{1}{2} + \frac{5}{2}i$ h -4
- 2 $z_1 = 11 + 2i$ and $z_2 = 2 + 4i$. Show z_1 , z_2 and $z_1 + z_2$ on an Argand diagram.
- $3 z_1 = -3 + 6i$ and $z_2 = 8 i$. Show z_1, z_2 and $z_1 + z_2$ on an Argand diagram.
- 4 $z_1 = 8 + 4i$ and $z_2 = 6 + 7i$. Show z_1 , z_2 and $z_1 z_2$ on an Argand diagram.
- 5 $z_1 = -6 5i$ and $z_2 = -4 + 4i$. Show z_1 , z_2 and $z_1 z_2$ on an Argand diagram.
- 6 z₁ = 7 5i, z₂ = a + bi and z₃ = -3 + 2i where a, b ∈ Z. Given that z₃ = z₁ + z₂,
 a find the values of a and b
 b show z₁, z₂ and z₃ on an Argand diagram.
- 7 z₁ = p + qi, z₂ = 9 5i and z₃ = -8 + 5i where p, q ∈ Z. Given that z₃ = z₁ + z₂,
 a find the values of p and q
 b show z₁, z₂ and z₃ on an Argand diagram.
 - 8 The solutions to the quadratic equation $z^2 6z + 10 = 0$ are z_1 and z_2 .
 - **a** Find z_1 and z_2 , giving your answers in the form $p \pm qi$, where p and q are integers. (3 marks)
 - **b** Show, on an Argand diagram, the points representing the complex numbers z_1 and z_2 . (2 marks)

9
$$f(z) = 2z^3 - 19z^2 + 64z - 60$$
(1 mark)a Show that $f(\frac{3}{2}) = 0$.(1 mark)b Use algebra to solve $f(z) = 0$ completely.(4 marks)c Show all three solutions on an Argand diagram.(2 marks)

ANSWERS

1

Exercise 2A

a
$$p = -17, q = 10$$

b Im
 $z_1 = -17 + 10i$
 $z_3 = -8 + 5i$
O Re
 $z_2 = 9 - 5i$

a $z_1 = 3 + i$ and $z_2 = 3 - i$. Other way round acceptable. **b** Im \uparrow

9 a
$$2\left(\frac{3}{2}\right)^3 - 19\left(\frac{3}{2}\right)^2 + 64\left(\frac{3}{2}\right) - 60 = 0$$

b $\left(\frac{3}{2}\right), 4 + 2i, 4 - 2i.$
c Im (4, 2)
 $\left(\frac{3}{2}, 0\right)$
Re
(4, -2)

Exercise 2C

- 1 Express the following in the form $r(\cos \theta + i \sin \theta)$, where $-\pi < \theta \le \pi$. Give the exact values of r and θ where possible, or values to 2 decimal places otherwise.
 - **a** 2 + 2i **b** 3i **c** -3 + 4i **d** $1 \sqrt{3i}$ **e** -2 - 5i **f** -20 **g** 7 - 24i **h** -5 + 5i
- 2 Express these in the form $r(\cos \theta + i \sin \theta)$, giving exact values of r and θ where possible, or values to two decimal places otherwise.
 - **a** $\frac{3}{1+i\sqrt{3}}$ **b** $\frac{1}{2-i}$ **c** $\frac{1+i}{1-i}$
- 3 Express the following in the form x + iy, where $x, y \in \mathbb{R}$.
 - **a** $5\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$ **b** $\frac{1}{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ **c** $6\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$ **d** $3\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right)$ **e** $2\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$ **f** $-4\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$

4 a Express the complex number $z = 4\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right)$ in the form x + iy, where $x, y \in \mathbb{R}$.

- **b** Show the complex number z on an Argand diagram.
- 5 The complex number z is such that |z| = 7 and $\arg z = \frac{11\pi}{6}$. Find z in the form p + qi, where p and q are exact real numbers to be found. (3 marks)
- 6 The complex number z is such that |z| = 5 and $\arg z = -\frac{4\pi}{3}$. Find z in the form a + bi, where a and b are exact real numbers to be found. (3 marks)

ANSWERS

Exercise 2C

1 **a** $2\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$ **b** $3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$ **c** $5(\cos 2.21 + i\sin 2.21)$ **d** $2\left(\cos\frac{-\pi}{3} + i\sin\frac{-\pi}{3}\right)$ **e** $\sqrt{29}(\cos(-1.95) + i\sin(-1.95))$ **f** $20(\cos\pi + i\sin\pi)$ **g** $25(\cos(-1.29) + i\sin(-1.29))$ **h** $5\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ 2 **a** $\frac{3}{2}\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$ **b** $\frac{\sqrt{5}}{5}(\cos 0.46 + i\sin 0.46)$ **c** $1\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$ 3 **a** 5i **b** $\frac{\sqrt{3}}{4} + \frac{1}{4}i$ **c** $-3\sqrt{3} + 3i$ **d** $-\frac{3}{2} - \frac{3\sqrt{3}}{2}i$ **e** 2 - 2i **f** $2\sqrt{3} + 2i$ 4 **a** $-2 + 2i\sqrt{3}$ shown on an Argand diagram. 5 $p = \frac{7\sqrt{3}}{2}, q = -\frac{7}{2}$ 6 $a = -\frac{5}{2}, b = \frac{5\sqrt{3}}{2}$ (2 marks)

(1 mark)

Exercise 2D

1 For each given z_1 and z_2 , find the following in the form $r(\cos\theta + i\sin\theta)$:

i
$$|z_1 z_2|$$
 ii $\arg(z_1 z_2)$ iii $z_1 z_2$
a $z_1 = 5\left(\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8}\right), z_2 = 6\left(\cos\frac{7\pi}{8} + i\sin\frac{7\pi}{8}\right)$
b $z_1 = \sqrt{2}\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right), z_2 = 4\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$
2 Given $z_1 = 8\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$ and $z_2 = 4\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$, write down the modulus and argument of:
a $z_1 z_2$ b $\frac{z_1}{z_2}$ c z_1^2

- 3 Express the following in the form x + iy:
 - a $(\cos 2\theta + i\sin 2\theta)(\cos 3\theta + i\sin 3\theta)$ b $\left(\cos \frac{3\pi}{11} + i\sin \frac{3\pi}{11}\right)\left(\cos \frac{8\pi}{11} + i\sin \frac{8\pi}{11}\right)$ c $3\left(\cos \frac{\pi}{4} + i\sin \frac{\pi}{4}\right) \times 2\left(\cos \frac{\pi}{12} + i\sin \frac{\pi}{12}\right)$ d $\sqrt{6}\left(\cos \frac{\pi}{3} - i\sin \frac{\pi}{3}\right) \times \sqrt{3}\left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right)$ e $4\left(\cos \frac{5\pi}{9} - i\sin \frac{5\pi}{9}\right) \times \frac{1}{2}\left(\cos \frac{5\pi}{18} - i\sin \frac{5\pi}{18}\right)$ f $6\left(\cos \frac{\pi}{10} + i\sin \frac{\pi}{10}\right) \times 5\left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right) \times \frac{1}{3}\left(\cos \frac{2\pi}{5} + i\sin \frac{2\pi}{5}\right)$ Hint First make sure both numbers are in modulus-argument form. g $(\cos 4\theta + i\sin 4\theta)(\cos \theta - i\sin \theta)$ h $3\left(\cos \frac{\pi}{12} + i\sin \frac{\pi}{12}\right) \times \sqrt{2}\left(\cos \frac{\pi}{3} - i\sin \frac{\pi}{3}\right)$

4 Express the following in the form x + iy:

$$\mathbf{a} \ \frac{\cos 5\theta + \mathrm{i}\sin 5\theta}{\cos 2\theta + \mathrm{i}\sin 2\theta} \qquad \mathbf{b} \ \frac{\sqrt{2}\left(\cos\frac{\pi}{2} + \mathrm{i}\sin\frac{\pi}{2}\right)}{\frac{1}{2}\left(\cos\frac{\pi}{4} + \mathrm{i}\sin\frac{\pi}{4}\right)} \quad \mathbf{c} \ \frac{3\left(\cos\frac{\pi}{3} + \mathrm{i}\sin\frac{\pi}{3}\right)}{4\left(\cos\frac{5\pi}{6} + \mathrm{i}\sin\frac{5\pi}{6}\right)} \ \mathbf{d} \ \frac{\cos 2\theta - \mathrm{i}\sin 2\theta}{\cos 3\theta + \mathrm{i}\sin 3\theta}$$

5 $z = -9 + 3i\sqrt{3}$

a Express z in the form $r(\cos\theta + i\sin\theta)$, $-\pi < \theta \le \pi$ (2 marks) **b** Given that $|w| = \sqrt{3}$ and $\arg w = \frac{7\pi}{12}$, express in the form $r(\cos\theta + i\sin\theta)$, $-\pi < \theta \le \pi$: **i** w **ii** zw **iii** $\frac{z}{w}$ (4 marks)

ANSWERS

Exercise 2D
1 a i
$$|z_1z_2| = 30$$
 ii $\arg(z_1z_2) = \frac{5\pi}{4}$
b i $|z_1z_2| = 8$ ii $\arg(z_1z_2) = \frac{13\pi}{12}$
iii $8\left(\cos\frac{13\pi}{12} + i\sin\frac{13\pi}{12}\right)$
2 a $|z_1z_2| = 32, \arg(z_1z_2) = \frac{4\pi}{15}$
b $\left|\frac{z_1}{z_2}\right| = 2, \arg\left(\frac{z_1}{z_2}\right) = \frac{14\pi}{5}$
c $|z_1^2| = 64, \arg(z_1^2) = -\frac{4\pi}{5}$
ii $\arg(z_1z_2) = \frac{3\pi}{12}$
iii $\arg(z_1z_2) = \frac{5\pi}{4}$
iii $\arg(z_1z_2) = \frac{13\pi}{12}$
b $\left|\frac{z_1}{z_2}\right| = 2, \arg\left(\frac{z_1}{z_2}\right) = \frac{14\pi}{5}$
c $|z_1^2| = 64, \arg(z_1^2) = -\frac{4\pi}{5}$
iii $\arg(z_1z_2) = \frac{3\pi}{12}$
ivertices and the second stress of the second stress of

Exercise 2E

) 1 Sketch the locus of z and give the Cartesian equation of the locus of z when: Hint You may choose a geometric or an algebraic **a** |z| = 6**b** |z| = 10c |z-3|=2**d** |z + 3i| = 3 **e** |z - 4i| = 5 **f** |z + 1| = 1approach to answer these questions. g |z - 1 - i| = 5 h |z + 3 + 4i| = 4 i |z - 5 + 6i| = 52 Given that z satisfies |z - 5 - 4i| = 8, a sketch the locus of z on an Argand diagram **b** find the exact values of z that satisfy: i both |z - 5 - 4i| = 8 and Re(z) = 0ii both |z - 5 - 4i| = 8 and Im(z) = 03 A complex number z is represented by the point P on the Argand diagram. Given that |z - 5 + 7i| = 5, a sketch the locus of P**b** find the Cartesian equation of this locus c find the maximum value of $\arg z$ in the interval $(-\pi, \pi)$. 4 On an Argand diagram the point P represents the complex number z. Given that |z - 4 - 3i| = 8, a find the Cartesian equation for the locus of P(2 marks) **b** sketch the locus of P(2 marks) c find the maximum and minimum values of |z| for points on this locus. (2 marks) 5 The point P represents a complex number z on an Argand diagram. Given that $|z + 2 - 2\sqrt{3}i| = 2$, a sketch the locus of P on an Argand diagram (2 marks) **b** write down the minimum value of arg z (2 marks) c find the maximum value of argz. (2 marks) 6 Sketch the locus of z and give the Cartesian equation of the locus of z when: a |z - 6| = |z - 2|**b** |z + 8| = |z - 4|

	1	\sim	
c	$ z = z + 6\mathbf{i} $	d	z + 3i = z - 8i
e	$ z - 2 - 2\mathbf{i} = z + 2 + 2\mathbf{i} $	f	z + 4 + i = z + 4 + 6i
g	z + 3 - 5i = z - 7 - 5i	h	z + 4 - 2i = z - 8 + 2i
i	$\frac{ z+3 }{ z-6i } = 1$	j	$\frac{ z+6-i }{ z-10-5i } = 1$

- 7 Given that |z 3| = |z 6i|,
 a sketch the locus of z
 b find the exact least possible value of |z|.
 8 Given that |z + 3 + 3i| = |z 9 5i|,
 - **a** sketch the locus of z
 - b find the Cartesian equation of this locus
 - **c** find the exact least possible value of |z|.

9 Sketch the locus of z and give the Cartesian equation of the locus of z when:

b |5i - z| = 4

a |2 - z| = 3

c
$$|3 - 2\mathbf{i} - z| = 3$$

- 10 Sketch the locus of z when: π
 - **a** $\arg z = \frac{\pi}{3}$ **b** $\arg(z + 3) = \frac{\pi}{4}$ **c** $\arg(z - 2) = \frac{\pi}{2}$ **d** $\arg(z + 2 + 2i) = -\frac{\pi}{4}$ **e** $\arg(z - 1 - i) = \frac{3\pi}{4}$ **f** $\arg(z + 3i) = \pi$ **g** $\arg(z - 1 + 3i) = \frac{2\pi}{3}$ **h** $\arg(z - 3 + 4i) = -\frac{\pi}{2}$ **i** $\arg(z - 4i) = -\frac{3\pi}{4}$

ANSWERS

Re

(3 marks)

(3 marks)

(3 marks)

-Edexcel Book Ex2F Q1aceg,2-6

Exercise 2F

1 On an Argand diagram, shade in the regions represented by the following inequalities:

a	z < 3	b $ z - 2i > 2$	$\mathbf{c} z+7 \ge z-1 $	d	z + 6 > z + 2 + 8i
e	$2 \leq z \leq 3$	f $1 \leq z+4i \leq 4$	$\mathbf{g} \ 3 \leq z - 3 + 5\mathbf{i} \leq 5$		

2 The region R in an Argand diagram is satisfied by the inequalities |z| ≤ 5 and |z| ≤ |z - 6i|.
 Draw an Argand diagram and shade in the region R.
 (6 marks)

3 The complex number z is represented by a point P on an Argand diagram.

Given that $|z + 1 - i| \le 1$ and $0 \le \arg z \le \frac{3\pi}{4}$, shade the locus of *P*. (6 marks)

4 Shade on an Argand diagram the region satisfied by

$$z \in \mathbb{C} : |z| \le 3\} \cap \left\{ z \in \mathbb{C} : \frac{\pi}{4} \le \arg(z+3) \le \pi \right\}$$
 (6 marks)

- 5 a Sketch on the same Argand diagram:
 - i the locus of points representing |z 2| = |z 6 8i| (2 marks)
 - ii the locus of points representing $\arg(z 4 2i) = 0$ (2 marks)
 - iii the locus of points representing $\arg(z 4 2i) = \frac{\pi}{2}$ (2 marks)
 - **b** Shade on an Argand diagram the set of points

$$\{z \in \mathbb{C} : |z-2| \le |z-6-8i|\} \cap \left\{z \in \mathbb{C} : 0 \le \arg(z-4-2i) \le \frac{\pi}{2}\right\}$$
(2 marks)

- 6 a Find the Cartesian equations of:
 - i the locus of points representing $|z + 10| = |z 6 4i\sqrt{2}|$
 - ii the locus of points representing |z + 1| = 3.
 - **b** Find the two values of z that satisfy both $|z + 10| = |z 6 4i\sqrt{2}|$ and |z + 1| = 3. (2 marks)
 - c Hence shade in the region R on an Argand diagram which satisfies both $|z + 10| \le |z - 6 - 4i\sqrt{2}|$ and $|z + 1| \le 3$. (4 marks)

ANSWERS

ł

(6 marks)

6 a i $y = -2\sqrt{2}x - 2\sqrt{2}$ ii $(x + 1)^2 + y^2 = 9$ b $z = -\sqrt{2} + 2i\sqrt{2}$ or z = -2i

С

-Edexcel Book Mixed Exercise 2

Mixed exercise 2

1 $f(z) = z^2 + 5z + 10$

a Find the roots of the equation $f(z) = 0$, giving your answers in the form $a \pm ib$, where a and b are real numbers.	(3 marks)
b Show these roots on an Argand diagram.	(1 mark)
2 $f(z) = z^3 + z^2 + 3z - 5$	
Given that $f(-1 + 2i) = 0$,	
a find all the solutions to the equation $f(z) = 0$	(4 marks)
b show all the roots of $f(z) = 0$ on a single Argand diagram	(2 marks)
c prove that these three points are the vertices of a right-angled triangle.	(2 marks)
3 $f(z) = z^4 - z^3 + 13z^2 - 47z + 34$	
Given that $z = -1 + 4i$ is a solution to the equation,	
a find all the solutions to the equation $f(z) = 0$	(4 marks)
b show all the roots on a single Argand diagram.	(2 marks)

4	The real and imaginary parts of the complex number $z = x + iy$ satisfy the equation (4 - 3i)x - (1 + 6i)y - 3 = 0	
	a Find the value of x and the value of y.	(3 marks)
	b Show z on an Argand diagram.	(1 mark)
	Find the values of:	
	c <i>Z</i>	(2 marks)
	d argz	(2 marks)
5	$z_1 = 4 + 2i, z_2 = -3 + i$	
	a Draw points representing z_1 and z_2 on the same Argand diagram.	(1 mark)
	b Find the exact value of $ z_1 - z_2 $.	(2 marks)
	Given that $w = \frac{z_1}{z_2}$,	
	c express w in the form $a + ib$, where $a, b \in \mathbb{R}$	(2 marks)
	d find arg w, giving your answer in radians.	(2 marks)
6	A complex number z is given by $z = a + 4i$ where a is a non-zero real number.	
	a Find $z^2 + 2z$ in the form $x + iy$, where x and y are real expressions in terms of a. Given that $z^2 + 2z$ is real.	(4 marks)
	b find the value of <i>a</i> .	(1 mark)
	Using this value for a,	
	\mathbf{c} find the values of the modulus and argument of z, giving the argument in radians	and
	giving your answers correct to 3 significant figures.	(3 marks)
	d Show the complex numbers z, z^2 and $z^2 + 2z$ on a single Argand diagram.	(3 marks)
7	The complex number z is defined by $z = \frac{3+5i}{2-i}$	
	a z	(4 marks)
	b argz	(2 marks)
8	$z = 1 \pm 2i$	(2 111113)
0	a Show that $ z^2 - z = 2\sqrt{5}$	(A marke)
	b Find $\arg(z^2 - z)$, giving your answer in radians to 2 decimal places.	(2 marks)
	c Show z and $z^2 - z$ on a single Argand diagram.	(2 marks)
9	$z = \frac{1}{2+i}$	()
	a Express in the form $a + bi$, where $a, b \in \mathbb{R}$,	
	i z^2 ii $z - \frac{1}{z}$	(4 marks)
	b Find $ z^2 $.	(2 marks)
	c Find $\arg\left(z-\frac{1}{z}\right)$, giving your answer in radians to two decimal places	(2 marks)
10	$z = \frac{a+3i}{2+ai}, \qquad a \in \mathbb{R}$	()
	a Given that $a = 4$, find $ z $.	
	b Show that there is only one value of <i>a</i> for which $\arg z = \frac{\pi}{4}$, and find this value.	

11	$z_1 = -1 - i, z_2 = 1 + i\sqrt{3}$	
	a Express z_1 and z_2 in the form $r(\cos\theta + i\sin\theta)$, where $-\pi < \theta \le \pi$.	(2 marks)
	b Find the modulus of:	
	i $z_1 z_2$ ii $\frac{z_1}{z_2}$	(2 marks)
	c Find the argument of:	
	i $z_1 z_2$ ii $\frac{z_1}{z_2}$	(2 marks)
12	$z = 2 - 2i\sqrt{3}$	
	Find:	
	\mathbf{a} z	(1 mark)
	b argz, in terms of π .	(2 marks)
	$w = 4(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}))$	
	Find:	
	$c \left \frac{w}{z} \right $	(1 mark)
	d $\arg\left(\frac{w}{z}\right)$, in terms of π .	(2 marks)
13	Express 4 – 4i in the form $r(\cos \theta + i \sin \theta)$, where $r > 0, -\pi < \theta \le \pi$,	
	giving r and θ as exact values.	(3 marks)
14		
14	The point P represents a complex number z in an Argand diagram.	
	Given that $ z + 1 - 1 = 1$, a find a Cartesian equation for the lower of <i>P</i> .	
	b sketch the locus of <i>P</i> on an Argand diagram	(2 marks)
	c find the greatest and least possible values of $ z $	(2 marks)
	d find the greatest and least possible values of $ z = 11$	(2 marks)
15	Given that $\arg(z - 2 + 4i) = \frac{\pi}{2}$	(2 mar KS)
10	a sketch the loops of $P(x, z)$ which we want to a triangle of $P(x, z)$ which we want to be the triangle of $P(x$	
	a sketch the focus of $F(x, y)$ which represents z on an Argand diagram b find the minimum value of $ z $ for points on this lower	
16	The second	
10	The complex number z satisfies $ z + 3 - 6i = 3$. Show that the exact maximum value of π	of
	$\arg z$ in the interval $(-\pi, \pi)$ is $\frac{\pi}{2} + 2 \arcsin\left(\frac{1}{\sqrt{5}}\right)$.	(4 marks)
17	A complex number z is represented by the point P on the Argand diagram. Given that $ z - 5 = 4$.	
	a sketch the locus of P.	(2 marks)
	b Find the complex numbers that satisfy both $ z - 5 = 4$ and $\arg(z + 3i) = \frac{\pi}{2}$,	()
	giving your answers in radians to 2 decimal places.	(6 marks)
	c Given that $\arg(z + 5) = \theta$ and $ z - 5 = 4$ have no common solutions, find the range of possible values of $\theta = \pi \le \theta \le \pi$	(2
	or possible values of $v, -\pi < v < \pi$.	(3 marks)

- 18 Given that |z + 5 5i| = |z 6 3i|,
 - a sketch the locus of z
 - b find the Cartesian equation of this locus
 - c find the least possible value of |z|.

19 a Find the Cartesian equation of the locus of points that satisfies |z - 4| = |z - 8i|. (3 marks)

- **b** Find the value of z that satisfies both |z-2| = |z-4i| and $\arg z = \frac{\pi}{4}$
- c Shade on an Argand diagram the set of points $\{z \in \mathbb{C} : |z-4| \le |z-8\mathbf{i}|\} \cap \left\{z \in \mathbb{C} : \frac{\pi}{4} \le \arg z \le \pi\right\}$ (3 marks)
- 20 a Find the Cartesian equations of:
 - i the locus of points representing |z 3 + i| = |z 1 i|
 - ii the locus of points representing $|z 2| = 2\sqrt{2}$. (6 marks)
 - **b** Find the two values of z that satisfy both |z 3 + i| = |z 1 i| and $|z 2| = 2\sqrt{2}$. (2 marks)
 - The region R is defined by the inequalities $|z 3 + i| \ge |z 1 i|$ and $|z 2| \le 2\sqrt{2}$.
 - c Show the region R on an Argand diagram.

ANSWERS

- 2 a -1 + 2i, -1 2i are two of the roots. These roots can be used to form the quadratic $z^2 + 2z + 5$.
 - $(z-1)(z^2+2z+5) = f(z)$, so third root is 1.
 - **b** Argand diagram showing -1 + 2i, -1 2i and 1. c Sides of triangle are $\sqrt{8}$, $\sqrt{8}$ and 4. $(\sqrt{8})^2 + (\sqrt{8})^2 = 4^2$.
 - **a** -1 + 4i, -1 4i, 2, 1
- 3 **b** Argand diagram showing above roots.
- 4 a 4x y = 3
- $-3x 6y = 0 \Rightarrow x = -2y$ $-9y = 3 \Rightarrow y = -\frac{1}{3} \Rightarrow x = \frac{2}{3}$
- **b** Argand diagram showing the point $z = \frac{2}{3} \frac{1}{3}i$
- $c \frac{\sqrt{5}}{}$
- d = -0.46 rad

d Show z = -1 + 4i, $z^2 = -15 - 8i$ and $z^2 + 2z = -17$ on a single Argand diagram.

7 **a**
$$z = \frac{(3+5i)(2+i)}{(2-i)(2+i)} = \frac{1}{5} + \frac{13}{5}i$$

 $|z| = \frac{1}{5}\sqrt{170}$
b $\arg z = 1.49$
8 **a** $z^2 = -3 + 4i$
 $z^2 - z = -4 + 2i$
 $|-4 + 2i| = \sqrt{(-4)^2 + (2)^2} = \sqrt{20} = 2\sqrt{5}$
b 2.68
c y
 $(-4, 2)$
 $z^2 - z$
 0
 x
9 **a** i $\frac{3}{25} - \frac{4}{25}i$ **ii** $\frac{-8}{5} - \frac{6}{5}i$ **b** $\frac{1}{5}$ **c** -2.50
10 **a** $\frac{\sqrt{5}}{2}$
b $\frac{a+3i}{2+ai} = \frac{5a}{4+a^2} + \frac{-a^2+6}{4+a^2}i$,
for $\arg z = \frac{\pi}{4}$ real and imaginary parts must be equal
 $\Rightarrow a^2 + 5a - 6 = 0$
 $\Rightarrow a = -6$ or 1
a cannot be negative otherwise $\arg z$ is negative

$$a \text{ cannot be}$$

 $\therefore a = 1$

$$\therefore a = 1$$
11 a $z_1 = \sqrt{2} \left(\cos \left(-\frac{3\pi}{4} \right) + i \sin \left(-\frac{3\pi}{4} \right) \right)$ and
 $z_2 = 2 \left(\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} \right) \right)$
b $i \ 2\sqrt{2}$ $ii \ \frac{\sqrt{2}}{2}$
c $i \ -\frac{5\pi}{12}$ $ii \ \frac{11\pi}{12}$
12 a $|z| = |2 - 2i\sqrt{3}| = \sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{16} = 4$
b $\arg z = -\frac{\pi}{3}$
c $\left| \frac{w}{z} \right| = 1$

.

d
$$\arg\left(\frac{w}{z}\right) = \frac{\pi}{12}$$

(4 marks)

(3 marks)

(3 marks)

(3 marks)

(3 marks)

