Roots of Polynomials Questions

- 1 α and β are the roots of the quadratic equation $3x^2 + 7x 4 = 0$. Without solving the equation, find the values of:
 - $\mathbf{a} \ \alpha + \beta$
- b $\alpha\beta$
- $c \frac{1}{\alpha} + \frac{1}{\beta}$
- 2 α and β are the roots of the quadratic equation $7x^2 3x + 1 = 0$. Without solving the equation, find the values of:
 - $\mathbf{a} \ \alpha + \beta$
- b aB
- $\mathbf{c} = \frac{1}{\alpha} + \frac{1}{\beta}$
- d $\alpha^2 + \beta^2$
- 3 α and β are the roots of the quadratic equation $6x^2 9x + 2 = 0$. Without solving the equation, find the values of:
 - $\mathbf{a} \ \alpha + \beta$

b $\alpha^2 \times \beta^2$

 $c \frac{1}{\alpha} + \frac{1}{\beta}$

- d $\alpha^3 + \beta^3$
- **Hint** Try expanding $(\alpha + \beta)^3$.
- 4 The roots of a quadratic equation $ax^2 + bx + c = 0$ are $\alpha = 2$ and $\beta = -3$. Find integer values for a, b and c.
- 5 The roots of a quadratic equation $ax^2 + bx + c = 0$ are $\alpha = -\frac{1}{2}$ and $\beta = -\frac{1}{3}$ Find integer values for a, b and c.
- 6 The roots of a quadratic equation $ax^2 + bx + c = 0$ are $\alpha = \frac{-1+i}{2}$ and $\beta = \frac{-1-i}{2}$ Find integer values for a, b and c.
- 7 One of the roots of the quadratic equation $ax^2 + bx + c = 0$ is $\alpha = -1 4i$.
 - a Write down the other root, β .
 - **b** Given that a = 1, find the values of b and c.
- 8 Given that $kx^2 + (k-3)x 2 = 0$, find the value of k if the sum of the roots is 4.
- 9 The equation $nx^2 (16 + n)x + 256 = 0$ has real roots α and $-\alpha$. Find the value of n.
- 10 The roots of the equation $6x^2 + 36x + k = 0$ are reciprocals of each other. Find the value of k.
- 11 The equation $mx^2 + 4x + 4m = 0$ has roots of the form k and 2k. Find the values of m and k.
- (P) 12 The equation $ax^2 + 8x + c = 0$, where a and c are real constants, has roots α and α^* .
 - a Given that $Re(\alpha) = 2$, find the value of a.
 - **b** Given that $Im(\alpha) = 3i$, find the value of c.
- (P) 13 The equation $4x^2 + px + q = 0$, where p and q are real constants, has roots α and α^* .
 - a Given that $Re(\alpha) = -3$, find the value of p.
 - **b** Given that $Im(\alpha) \neq 0$, find the range of possible values of q.

ANSWERS

Exercise 4A

- 1 a $-\frac{7}{3}$
 - **b** $\frac{1}{7}$

- $\mathbf{a} = \frac{3}{2}$ a = 1, b = 1, c = -6
- a = 6, b = 5, c = 1
- a = 2, b = 2, c = 1a -1 + 4i7
- **b** b = 2, c = 17
- $\frac{3}{5}$ -16

- 10 6 11 $k = \sqrt{2}$ and $m = \frac{2\sqrt{2}}{3}$ or $k = -\sqrt{2}$ and $m = \frac{2\sqrt{2}}{3}$ 12 **a** -2 **b** -26

Exercise

- 1 α , β and γ are the roots of the cubic equation $2x^3 + 5x^2 2x + 3 = 0$. Find the values of:
 - $a \alpha + \beta + \gamma$
- **b** $\alpha\beta\gamma$
- c $\alpha\beta + \beta\gamma + \gamma\alpha$
- 2 α , β and γ are the roots of the cubic equation $x^3 + 5x^2 + 17x + 13 = 0$. Find the values of:
 - $a \alpha + \beta + \gamma$
- c $\alpha\beta + \beta\gamma + \gamma\alpha$
- d $\alpha^2 \beta^2 \gamma^2$
- 3 α , β and γ are the roots of the cubic equation $7x^3 4x^2 x + 6 = 0$. Find the values of:

- **a** $\alpha + \beta + \gamma$ **b** $\alpha\beta\gamma$ **c** $\alpha^3\beta^3\gamma^3$ **d** $\frac{1}{\alpha} + \frac{1}{\beta}$ **4** The roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$ are $\alpha = \frac{3}{2}$, $\beta = \frac{1}{2}$ and $\gamma = 1$. Find integer values for a, b, c and d.
- 5 The roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$ are $\alpha = 1 + 3i$, $\beta = 1 3i$ and $\gamma = \frac{1}{2}$ Find integer values for a, b, c and d.
- 6 The roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$ are $\alpha = \frac{5}{4}$, $\beta = -\frac{3}{2}$ and $\gamma = \frac{1}{2}$ Find integer values for a, b, c and d.
- 7 The cubic equation $16x^3 kx^2 + 1 = 0$ has roots α , β and γ .
 - a Write down the values of $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$.

(2 marks)

b i Given that $\alpha = \beta$, find the roots of the equation.

(5 marks)

ii Find the value of k.

(1 mark)

- 8 The cubic equation $2x^3 kx^2 + 30x 13 = 0$ has roots α , β and γ .
 - a Write down the values of $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$, and express k in terms of
- (3 marks)

b Given that $\alpha = 2 - 3i$, find the value of k.

(4 marks)

- 9 The cubic equation $x^3 mx + n = 0$ has roots 1, -4 and α .
 - a State, with a reason, whether α is real.

(1 mark)

b Find the values of m, n and α .

(4 marks)

- 10 The cubic equation $2x^3 10x^2 + 8x k = 0$ has a root at x = 3 i.
 - a Find the other two roots of the equation.

(4 marks)

b Hence find the value of k.

- (2 marks)
- 11 The cubic equation $x^3 14x^2 + 56x 64 = 0$ has roots α , $k\alpha$ and $k^2\alpha$ for some real constant k. (5 marks) Find the values of α and k.
- 12 Given that the roots of $8x^3 + 12x^2 cx + d = 0$ are α , $\frac{\alpha}{2}$ and $\alpha 4$, find α , c and d. (5 marks)
- 13 Given that the roots of the cubic equation $2x^3 + 48x^2 + cx + d = 0$ are α , 2α and 3α , find the (5 marks) values of α , c and d.

ANSWERS

Exercise 4B

- 1 a $-\frac{5}{2}$
- a -5
- c -1
- **b** $-\frac{6}{7}$
- a = 4, b = -12, c = 11, d = -3a = 2, b = -5, c = 22, d = -10
- a = 16, b = -4, c = -32, d = 15
 - **a** $\alpha\beta + \beta\gamma + \gamma\alpha = 0$, $\alpha\beta\gamma = -\frac{1}{16}$
 - **b** i $\alpha = \frac{1}{2}, \beta = \frac{1}{2}, \gamma = -\frac{1}{4}$
- **a** $\alpha\beta + \beta\gamma + \gamma\alpha = 15$, $\alpha\beta\gamma = \frac{13}{2}$, $k = 2(\alpha + \beta + \gamma)$ **b** 9
- a Yes there are two other real roots, so α^* couldn't also be a root.
 - **b** $m = 13, n = 12, \alpha = 3$
- **10 a** -1 and 3 + i
- b 20
- **11** $\alpha = 2$ and k = 2 or $\alpha = 8$ and $k = \frac{1}{2}$
- **12** $\alpha = 1$, c = 32, d = 12
- 13 $\alpha = -4$, c = 352, d = 768

Exercise 40

- 1 α , β , γ and δ are the roots of the quartic equation $4x^4 + 3x^3 + 2x^2 - 5x - 4 = 0$. Without solving the equation, find the values of:

a $\alpha + \beta + \gamma + \delta$

 $\mathbf{c} \ \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta$

- **b** $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$ $\mathbf{d} = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$
- 2 α , β , γ and δ are the roots of the quartic equation $2x^4 + 4x^3 3x^2 x + 2 = 0$. Find the values of:
 - a $\alpha + \beta + \gamma + \delta$
- $\mathbf{b} \ \alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$
- $\mathbf{c} \quad \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta$

- d $\alpha\beta\gamma\delta$
- $e \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$
- 3 α , β , γ and δ are the roots of the quartic equation $x^4 + 3x^3 + 2x^2 x + 4 = 0$. Find the values of:
 - $\mathbf{a} \ \alpha + \beta + \gamma + \delta$
- $\mathbf{b} \ \alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$
- c $\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta$

- d $\alpha\beta\gamma\delta$
- e $\alpha^2 \beta^2 \gamma^2 \delta^2$
- 4 α , β , γ and δ are the roots of the quartic equation $7x^4 + 6x^3 5x^2 + 4x + 3 = 0$. Find the values of:
 - a $\alpha + \beta + \gamma + \delta$
- **b** $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$
- c $\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta$

- $\mathbf{d} \ \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$
- e $\alpha^3 \beta^3 \gamma^3 \delta^3$
- 5 The roots of a quartic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ are $\alpha = -\frac{3}{2}$, $\beta = -\frac{1}{2}$, $\gamma = -2$ and $\delta = \frac{2}{3}$ Find integer values for a, b, c, d and e.
- 6 The roots of a quartic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ are $\alpha = -\frac{1}{2}$, $\beta = \frac{1}{3}$, $\gamma = 1 + i$ and $\delta = 1 - i$. Find integer values for a, b, c, d and e.
- 7 The roots of a quartic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ are such that $\Sigma \alpha = \frac{17}{12}$, $\Sigma \alpha \beta = -\frac{25}{72}$, $\Sigma \alpha \beta \gamma = -\frac{53}{72}$ and $\alpha \beta \gamma \delta = -\frac{1}{6}$. Find integer values for a, b, c, d and e.
- 8 The quartic equation $x^4 16x^3 + 86x^2 176x + 105 = 0$ has roots α , $\alpha + k$, $\alpha + 2k$ and (7 marks) $\alpha + 3k$ for some real constant k. Solve the equation.
- 9 The quartic equation $3072x^4 2880x^3 + 840x^2 90x + 3 = 0$ has roots α , $r\alpha$, $r^2\alpha$ and $r^3\alpha$ for (7 marks) some real constant r. Solve the equation.
- 10 Three of the roots of the quartic equation $40x^4 + 90x^3 115x^2 + mx + n = 0$ are 1, -3 and $\frac{1}{2}$
 - a Find the fourth root.

(2 marks)

b Find the values of m and n.

- (4 marks)
- 11 The quartic equation $2x^4 34x^3 + 202x^2 + dx + e = 0$ has roots α , $\alpha + 1$, $2\alpha + 1$ and $3\alpha + 1$.
 - a Find α .

(2 marks)

b Find the values of d and e.

- (4 marks)
- 12 The equation $4x^4 19x^3 + px^2 + qx + 10 = 0$, $x \in \mathbb{C}$, $p, q \in \mathbb{R}$, has roots α, β, γ and δ . Given that $\gamma = 3 + i$ and $\delta = \gamma^*$,
 - **a** show that $4\alpha + 4\beta + 5 = 0$ and that $4\alpha\beta 1 = 0$.

- (2 marks)
- **b** Hence find all the roots of the quartic equation and find the values of p and q.
- (5 marks)

c Show these roots on an Argand diagram.

- (3 marks)
- 13 A quartic equation $6x^4 10x^3 + 3x^2 + 6x 40 = 0$ has roots α , β , γ and δ .
 - a Show that $\frac{1-3i}{2}$ is one root of the equation.

(3 marks)

b Without solving the equation, find the other roots.

(5 marks)

c Show these roots on an Argand diagram.

(3 marks)

ANSWERS

Exercise 40

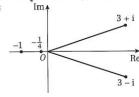
Excitise 46									
1	a	$-\frac{3}{4}$	b	$\frac{1}{2}$		$c = \frac{5}{4}$	d	$\frac{5}{4}$	
2	a	-2			b e	$\frac{-\frac{3}{2}}{\frac{1}{2}}$		\mathbf{c}	$\frac{1}{2}$
	d	1			e	$\frac{1}{2}^{-}$			
3		-3			b	2		c	1
	d	$\frac{1}{4}$				16			
4	\mathbf{a}	$-\frac{6}{7}$			b	$-\frac{5}{7}$		\mathbf{c}	$-\frac{4}{7}$
	\mathbf{d}	$-\frac{4}{3}$			\mathbf{e}	27 343			

5
$$\alpha = 12$$
, $b = 40$, $c = 25$, $d = -20$, $e = -12$

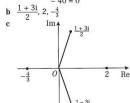
6
$$\alpha = 6, b = -11, c = 9, d = 4, e = -2$$

7
$$\alpha = 72$$
, $b = -102$, $c = -25$, $d = 53$, $e = -12$

8
$$x = 1, 3, 5 \text{ or } 7$$


9
$$x = \frac{1}{2}, \frac{1}{4}, \frac{1}{8} \text{ or } \frac{1}{16}$$

10 a
$$-\frac{3}{4}$$
 b $m = -60, n = 45$


11 a 2 **b**
$$d = -494, e = 420$$

12 a
$$\alpha + \beta + (3 + i) + (3 - i) = \frac{19}{4} \Rightarrow 4\alpha + 4\beta + 5 = 0$$

 $\alpha\beta(3 + i)(3 - i) = 10\alpha\beta = \frac{10}{4} \Rightarrow 4\alpha\beta - 1 = 0$

$$\alpha p(3+1)(3-1) = 10\alpha p - \frac{1}{4} \Rightarrow 4\alpha$$

b -1, $-\frac{1}{4}$, $3+i$, $3-i$, $p=11$, $q=44$
c Im

3 a
$$6\left(\frac{1-3i}{2}\right)^{\frac{1}{4}} - 10\left(\frac{1-3i}{2}\right)^{3} + 3\left(\frac{1-3i}{2}\right)^{2} + 6\left(\frac{1-3i}{2}\right)$$

Exercise 4D

- 1 A quadratic equation has roots α and β . Given that $\alpha + \beta = 4$ and $\alpha\beta = 3$, find:
 - $\mathbf{a} = \frac{1}{\alpha} + \frac{1}{\beta}$
- **b** $\alpha^2 \beta^2$
- $\mathbf{c} \quad \alpha^2 + \beta^2$
- d $\alpha^3 + \beta^3$
- **2** A quadratic equation has roots α and β . Given that $\alpha + \beta = -\frac{2}{3}$ and $\alpha\beta = \frac{3}{4}$, find:
 - $a \frac{1}{\alpha} + \frac{1}{\beta}$
- **b** $\alpha^2 \beta^2$
- $\mathbf{c} \quad \alpha^2 + \beta^2$
- d $\alpha^3 + \beta^3$
- 3 A quadratic equation has roots α and β . Given that $\alpha + \beta = \frac{5}{4}$ and $\alpha\beta = -\frac{1}{3}$, find:
 - $\mathbf{a} (\alpha + 2)(\beta + 2)$
- **b** $(\alpha 4)(\beta 4)$
- c $(\alpha^2 + 1)(\beta^2 + 1)$
- 4 A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = 2$, $\alpha\beta + \beta\gamma + \gamma\alpha = -3$ and $\alpha\beta\gamma = 4$,
 - $\mathbf{a} \ \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

- **b** $\alpha^2 + \beta^2 + \gamma^2$ **c** $\alpha^3 + \beta^3 + \gamma^3$ **d** $(\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2$
- 5 A cubic equation has roots α , β and γ . Given that $\Sigma \alpha = \frac{3}{2}$, $\Sigma \alpha \beta = -\frac{4}{3}$ and $\alpha \beta \gamma = \frac{1}{2}$, find:
 - $\mathbf{a} = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$
- **b** $\alpha^2 + \beta^2 + \gamma^2$ **c** $\alpha^3 + \beta^3 + \gamma^3$
- 6 A cubic equation has roots α , β and γ . Given that $\alpha + \beta + \gamma = -\frac{1}{2}$, $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{3}{4}$ and $\alpha\beta\gamma = -\frac{2}{5}$, find:
 - $\mathbf{a} \ (\alpha+2)(\beta+2)(\gamma+2)$
- **b** $(\alpha 3)(\beta 3)(\gamma 3)$
- c $(1 \alpha)(1 \beta)(1 \gamma)$

- d $(\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2$
- e $(\alpha\beta)^3 + (\beta\gamma)^3 + (\gamma\alpha)^3$
- 7 A quartic equation has roots α , β , γ and δ . Given that $\alpha + \beta + \gamma + \delta = 3$, $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = 5$, $\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = -4$ and $\alpha\beta\gamma\delta = -2$, find:
 - **a** $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$
- **b** $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$
- c $\alpha^4 \beta^4 \gamma^4 \delta^4$
- 8 A quartic equation has roots α , β , γ and δ . Given that $\Sigma \alpha = \frac{1}{2}$, $\Sigma \alpha \beta = -\frac{3}{4}$, $\Sigma \alpha \beta \gamma = -\frac{1}{5}$ and
 - $\mathbf{a} \ \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$
- **b** $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$
- c $\alpha^3 \beta^3 \gamma^3 \delta^3$

- **d** $(\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2 + (\gamma\delta)^2 + (\alpha\delta)^2 + (\beta\delta)^2$
- e $(\alpha\beta\gamma)^2 + (\alpha\beta\delta)^2 + (\alpha\gamma\delta)^2 + (\beta\gamma\delta)^2$
- 9 A quartic equation has roots α , β , γ and δ . Given that $\Sigma \alpha = -\frac{1}{2}$, $\Sigma \alpha \beta = -\frac{1}{3}$, $\Sigma \alpha \beta \gamma = \frac{1}{4}$ and $\alpha\beta\gamma\delta = \frac{3}{2}$, find:

 - **a** $(\alpha + 1)(\beta + 1)(\gamma + 1)(\delta + 1)$ **b** $(2 \alpha)(2 \beta)(2 \gamma)(2 \delta)$
- 10 The roots of the equation $x^3 6x^2 + 9x 15 = 0$ are α , β and γ .
 - a Write down the values of $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$.

(1 mark)

- b Hence find the values of:
 - $\mathbf{i} \quad \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

(2 marks)

ii $\alpha^2 + \beta^2 + \gamma^2$

(2 marks)

iii $(\alpha-1)(\beta-1)(\gamma-1)$

(3 marks)

- 11 The roots of the equation $2x^3 + 4x^2 + 7 = 0$ are α , β and γ .
 - a Write down the values of $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$.

(1 mark)

- b Hence find the values of:
 - i $\alpha^2 + \beta^2 + \gamma^2$

(2 marks)

ii $\alpha^3 \beta^3 \gamma^3$

(2 marks)

iii $(\alpha + 2)(\beta + 2)(\gamma + 2)$

(3 marks)

```
12 Show that \alpha^3 + \beta^3 + \gamma^3 \equiv (\alpha + \beta + \gamma)^3 - 3(\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha) + 3\alpha\beta\gamma.
```

13 The roots of the equation $3x^3 - px + 11 = 0$ are α , β and γ .

a Given that
$$\alpha\beta + \beta\gamma + \gamma\alpha = 4$$
, write down the value of p. (1 mark)

b Write down the values of
$$\alpha + \beta + \gamma$$
 and $\alpha\beta\gamma$. (1 mark)

c Hence find the value of
$$(3 - \alpha)(3 - \beta)(3 - \gamma)$$
. (3 marks)

14 The roots of the equation $x^4 + 2x^2 - x + 3 = 0$ are α , β , γ and δ .

a Write down the values of
$$\Sigma \alpha$$
, $\Sigma \alpha \beta$, $\Sigma \alpha \beta \gamma$ and $\alpha \beta \gamma \delta$. (1 mark)

b Hence find the values of:

$$\mathbf{i} \quad \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} \tag{3 marks}$$

ii
$$\alpha^2 + \beta^2 + \gamma^2 + \delta^2$$
 (3 marks)

iii
$$(\alpha+1)(\beta+1)(\gamma+1)(\delta+1)$$
 (3 marks)

15 The roots of the equation $ax^4 + 3x^3 + 2x^2 + x - 6 = 0$ are α , β , γ and δ .

a Given that
$$\alpha\beta\gamma\delta = -3$$
, write down the value of a. (1 mark)

b Write down the values of
$$\Sigma \alpha$$
, $\Sigma \alpha \beta$ and $\Sigma \alpha \beta \gamma$. (1 mark)

c Hence find the value of
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$$
 (3 marks)

16 Prove that if a quartic equation has roots α , β , γ and δ then $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 \equiv (\Sigma \alpha)^2 - 2\Sigma \alpha \beta$.

ANSWERS

Exercise 4D

1 a
$$\frac{4}{3}$$
 b 9 c 10 d 28

2 **a**
$$-\frac{8}{9}$$
 b $\frac{9}{16}$ **c** $-\frac{19}{18}$ **d** $\frac{6}{5}$

4 a
$$-\frac{3}{4}$$
 b 10 c 38 d -7

5 a
$$-\frac{8}{12}$$
 b $\frac{59}{12}$ c $\frac{87}{12}$ d $\frac{1}{12}$

1 a
$$\frac{\pi}{3}$$
 b 9 c 10 d 28
2 a $-\frac{8}{9}$ b $\frac{9}{16}$ c $-\frac{19}{18}$ d $\frac{65}{54}$
3 a $\frac{37}{6}$ b $\frac{32}{3}$ c $\frac{481}{144}$
4 a $-\frac{3}{4}$ b 10 c 38 d -7
5 a $-\frac{8}{3}$ b $\frac{59}{12}$ c $\frac{87}{8}$ d $\frac{1}{8}$
6 a $\frac{71}{10}$ b $\frac{683}{20}$ c $\frac{53}{20}$ d $\frac{13}{80}$ e $\frac{723}{1600}$
7 a 2 b -1 c 16
8 a $-\frac{3}{20}$ b $\frac{7}{4}$ c $\frac{64}{27}$ d $\frac{823}{240}$ e $\frac{51}{25}$

8 a
$$-\frac{3}{20}$$
 b $\frac{7}{4}$ c $\frac{64}{27}$ d $\frac{823}{240}$ e $\frac{51}{25}$

9 **a**
$$\frac{23}{12}$$
 b $\frac{59}{3}$

10 a
$$\alpha + \beta + \gamma = 6$$
, $\alpha\beta + \beta\gamma + \gamma\alpha = 9$, $\alpha\beta\gamma = 15$

b i
$$\frac{3}{5}$$
 ii 18 iii 11

11 **a**
$$\alpha + \beta + \gamma = -2$$
, $\alpha\beta + \beta\gamma + \gamma\alpha = 0$, $\alpha\beta\gamma = -\frac{7}{2}$
b i 4 **ii** $-\frac{343}{8}$ **iii** $-\frac{7}{2}$

12
$$(\alpha + \beta + \gamma)^3 \equiv (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \beta\gamma + \gamma\alpha))$$

$$\equiv \alpha^3 + \beta^3 + \gamma^3 + \alpha(\beta^2 + \gamma^2) + \beta(\alpha^2 + \gamma^2)$$

$$+ \gamma(\alpha^2 + \beta^2) + 2(\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$(\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$\equiv \alpha^2\beta + \beta^2\alpha + \alpha^2\gamma + \gamma^2\alpha + \beta^2\gamma + \gamma^2\beta + 3\alpha\beta\gamma$$

$$\equiv \alpha(\beta^2 + \gamma^2) + \beta(\alpha^2 + \gamma^2) + \gamma(\alpha^2 + \beta^2) + 3\alpha\beta\gamma$$

$$(\alpha + \beta + \gamma)^3 \equiv \alpha^3 + \beta^3 + \gamma^3 + 3(\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha) - 3\alpha\beta\gamma$$

$$\alpha^3 + \beta^3 + \gamma^3 \equiv (\alpha + \beta + \gamma)^3 - 3(\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha) + 3\alpha\beta\gamma$$

13 a -12 **b**
$$\alpha + \beta + \gamma = 0$$
, $\alpha\beta\gamma = -\frac{11}{3}$ **c** $\frac{128}{3}$

14 a
$$\sum \alpha = 0$$
, $\sum \alpha \beta = 2$, $\sum \alpha \beta \gamma = 1$, $\alpha \beta \gamma \delta = 3$

b i
$$\frac{1}{3}$$
 ii -4 iii 7

b i
$$\frac{1}{3}$$
 ii -4 iii 7
15 a 2 b $\sum \alpha = -\frac{3}{2}$, $\sum \alpha \beta = 1$, $\sum \alpha \beta \gamma = -\frac{1}{2}$ c $\frac{1}{6}$
16 $(\sum \alpha)^2 \equiv (\alpha + \beta + \gamma + \delta)^2$

16
$$(\sum \alpha)^2 \equiv (\alpha + \beta + \gamma + \delta)^2$$

 $\equiv \alpha^2 + \beta^2 + \gamma^2 + \delta^2 + 2(\alpha\beta + \beta\gamma + \gamma\delta + \alpha\gamma + \beta\delta + \alpha\delta)$
 $\Rightarrow \alpha^2 + \beta^2 + \gamma^2 + \delta^2 \equiv (\sum \alpha)^2 - 2(\alpha\beta + \beta\gamma + \gamma\delta + \alpha\gamma + \beta\delta + \alpha\delta)$

- 1 The cubic equation $x^3 7x^2 + 6x + 5 = 0$ has roots α , β and γ . Find equations with roots:
 - **a** $(\alpha + 1)$, $(\beta + 1)$ and $(\gamma + 1)$

- **b** 2α , 2β and 2γ
- **2** The cubic equation $3x^3 4x^2 5x + 1 = 0$ has roots α , β and γ . Find equations with roots:
 - **a** $(\alpha 3)$, $(\beta 3)$ and $(\gamma 3)$

- **b** $\frac{\alpha}{2}$, $\frac{\beta}{2}$ and $\frac{\gamma}{2}$
- 3 The cubic equation $x^3 3x^2 + 4x 7 = 0$ has roots α , β and γ . Without solving the equation, find the equation with roots $(2\alpha + 1)$, $(2\beta + 1)$ and $(2\gamma + 1)$. Give your answer in the form $aw^3 + bw^2 + cw + d = 0$ where a, b, c and d are integers to be determined. (5 marks)
- 4 The cubic equation $x^3 + 4x^2 4x + 2 = 0$ has roots α , β and γ . Without solving the equation, find the equation with roots $(2\alpha - 1)$, $(2\beta - 1)$ and $(2\gamma - 1)$. Give your answer in the form $w^3 + pw^2 + qw + r = 0$ where p, q and r are integers to be found. (5 marks)
- 5 The cubic equation $3x^3 x^2 + 2x 5 = 0$ has roots α , β and γ . Without solving the equation, find the equation with roots $(3\alpha + 1)$, $(3\beta + 1)$ and $(3\gamma + 1)$. Give your answer in the form $aw^3 + bw^2 + cw + d = 0$ where a, b, c and d are integers to be determined. (5 marks)
- 6 The quartic equation $2x^4 + 4x^3 5x^2 + 2x 1 = 0$ has roots α , β , γ and δ . Find equations with integer coefficients that have roots:
 - **a** 3α , 3β , 3γ and 3δ **b** $(\alpha 1)$
- **b** $(\alpha 1), (\beta 1), (\gamma 1)$ and $(\delta 1)$
- 7 The quartic equation $x^4 + 2x^3 3x^2 + 4x + 5 = 0$ has roots α , β , γ and δ . Without solving the equation, find equations with integer coefficients that have roots:
 - a 2α , 2β , 2γ and 2δ

(6 marks)

b $(\alpha - 2)$, $(\beta - 2)$, $(\gamma - 2)$ and $(\delta - 2)$

- (6 marks)
- 8 The quartic equation $3x^4 + 5x^3 4x^2 3x + 1 = 0$ has roots α , β , γ and δ . Without solving the equation, find equations with integer coefficients that have roots:

a 3α , 3β , 3γ and 3δ

(6 marks)

b $(\alpha + 1), (\beta + 1), (\gamma + 1) \text{ and } (\delta + 1)$

(6 marks)

ANSWERS

Exercise 4E

- 1 a $w^3 10w^2 + 23w 9 = 0$
- **b** $w^3 14w^2 + 24w + 40 = 0$ **2 a** $3w^3 + 23w^2 + 52w + 31 = 0$
 - **b** $24w^3 16w^2 10w + 1 = 0$
- $3 \quad w^3 9w^2 + 31w 79 = 0$
- 4 $w^3 + 11w^2 + 3w + 9 = 0$ 5 $w^3 - 4w^2 + 11w - 53 = 0$
- 6 a $2w^4 + 12w^3 45w^2 + 54w 81 = 0$
 - **b** $2w^4 + 12w^3 + 19w^2 + 12w + 2=0$
- 7 **a** $w^4 + 4w^3 12w^2 + 32w + 80 = 0$
- **b** $w^4 + 10w^3 + 33w^2 + 48w + 33 = 0$
- 8 a $w^4 + 5w^3 12w^2 27w + 27 = 0$
 - **b** $3w^4 7w^3 w^2 + 8w 2 = 0$

Mixed exercise 4

- 1 The roots of a quartic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ are $\alpha = \frac{1}{5}$, $\beta = -\frac{2}{5}$, $\gamma = -\frac{3}{5}$ and $\delta = -\frac{1}{2}$ Find integer values for a, b, c, d and e.
- 2 The cubic equation $x^3 + px^2 + 37x 52 = 0$ has roots α , β and γ .
 - a Write down the values of $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$, and express p in terms of α , β and γ . (3 marks)
 - **b** Given that $\alpha = 3 2i$, find the value of p. (4 marks)
- 3 The cubic equation $2x^3 + 5x^2 2x + q = 0$ has a root at x = -2 + i.
 - a Find the other two roots of the equation.

(4 marks)

b Hence find the value of q.

(2 marks)

- 4 The quartic equation $x^4 40x^3 + 510x^2 2200x + 1729 = 0$ has roots α , $\alpha + 2k$, $\alpha + 4k$ and $\alpha + 6k$ for some real constant k. Solve the equation. (7 marks)
- 5 Three of the roots of the quartic equation $24x^4 58x^3 + 17x^2 + dx + e = 0$ are $\frac{1}{2}$, $-\frac{1}{3}$ and 2.
 - a Find the fourth root.

(2 marks)

b Find the values of d and e.

(4 marks)

- **6** The equation $x^4 + 2x^3 + mx^2 + nx + 85 = 0$, $x \in \mathbb{C}$, $m, n \in \mathbb{R}$, has roots α, β, γ and δ . Given that $\alpha = -2 + i$ and $\beta = \alpha^*$,
 - **a** show that $\gamma + \delta 2 = 0$ and that $\gamma \delta 17 = 0$.

(2 marks)

b Hence find all the roots of the quartic equation and find the values of m and n.

(5 marks)

c Show these roots on an Argand diagram.

(3 marks)

- 7 A quartic equation $4x^4 16x^3 + 115x^2 + 4x 29 = 0$ has roots α , β , γ and δ .
 - a Show that 2 5i is one root of the equation.

(3 marks)

b Without solving the equation, find the other roots.

(5 marks)

c Show these roots on an Argand diagram.

(3 marks)

- 8 The roots of the equation $2x^3 5x^2 + 11x 9 = 0$ are α , β and γ .
 - **a** Write down the values of $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$.

(1 mark)

- b Hence find the values of:
 - $\mathbf{i} = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

(2 marks)

ii $\alpha^2 + \beta^2 + \gamma^2$

(2 marks)

iii $(\alpha-1)(\beta-1)(\gamma-1)$

- (3 marks)
- 9 The roots of the equation $px^4 + 12x^3 + 6x^2 + 5x 7 = 0$ are α , β , γ and δ .
 - a Given that $\alpha\beta\gamma\delta = -1$, write down the value of p.

(1 mark)

b Write down the values of $\Sigma \alpha$, $\Sigma \alpha \beta$ and $\Sigma \alpha \beta \gamma$.

(1 mark)

c Hence find the value of $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$.

(3 marks)

- 10 The roots of the equation $5x^3 + cx + 21 = 0$ are α , β and γ .
 - a Given that $\alpha\beta + \beta\gamma + \gamma\alpha = -6$, write down the value of c.

(1 mark)

b Write down values for $\alpha + \beta + \gamma$ and $\alpha\beta\gamma$.

(1 mark)

c Hence find the value of $(1 - \alpha)(1 - \beta)(1 - \gamma)$.

(3 marks)

- 11 The cubic equation $2x^3 + 5x^2 + 7x 2 = 0$ has roots α , β and γ .
 - Without solving the equation, find the equation with roots $(3\alpha + 1)$, $(3\beta + 1)$ and $(3\gamma + 1)$.

Give your answer in the form $pw^3 + qw^2 + rw + s = 0$ where p, q, r and s are integers to be found.

(5 marks)

12 The quartic equation $6x^4 - 2x^3 - 5x^2 + 7x + 8 = 0$ has roots α , β , γ and δ .

Without solving the equation, find equations with integer coefficients that have roots:

a 2α , 2β , 2γ and 2δ **b** $(3\alpha - 2)$, $(3\beta - 2)$, $(3\gamma - 2)$ and $(3\delta - 2)$ (6 marks)

(6 marks)

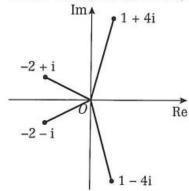
ANSWERS

Mixed exercise 4

1
$$\alpha = 250$$
, $b = 325$, $c = 110$, $d = -7$, $e = -6$

2 a
$$\alpha\beta + \beta\gamma + \gamma\alpha = 37$$
, $\alpha\beta\gamma = 52$, $p = -\alpha - \beta - \gamma$

3 a
$$-2 - i, \frac{3}{2}$$


4
$$x = 1, 7, 13$$
 or 19

5 a
$$\frac{1}{4}$$

b
$$d = 7, e = -2$$


6 **a**
$$(-2 + i) + (-2 - i) + \gamma + \delta = -2 \Rightarrow \gamma + \delta - 2 = 0$$

 $(-2 + i)(-2 - i)\gamma\delta = 85 \Rightarrow 5\gamma\delta = 85 \Rightarrow \gamma\delta - 17 = 0$

b Roots:
$$-2 \pm i$$
, $1 \pm 4i$; $m = 14$, $n = 58$

7 a
$$4(2-5i)^4-16(2-5i)^3+115(2-5i)^2+4(2-5i)-29=0$$

b
$$2 + 5i$$
, $\pm \frac{1}{2}$

8 **a**
$$\alpha + \beta + \gamma = \frac{5}{2}$$
, $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{11}{2}$, $\alpha\beta\gamma = \frac{9}{2}$

b i
$$\frac{11}{9}$$

ii
$$-\frac{19}{4}$$

iii
$$\frac{1}{2}$$

$$\mathbf{i} + \gamma = \frac{3}{2}, \ \alpha\beta + \beta\gamma + \gamma\alpha = \frac{12}{2}, \ \alpha\beta\gamma = \frac{3}{2}$$

$$\mathbf{i} \mathbf{i} - \frac{19}{4} \qquad \mathbf{i} \mathbf{i} \mathbf{i} \frac{1}{2}$$

$$\mathbf{b} \quad \sum \alpha = -\frac{12}{7}, \ \sum \alpha\beta = \frac{6}{7}, \ \sum \alpha\beta\gamma = -\frac{5}{7} \quad \mathbf{c} \quad \frac{60}{49}$$

$$\mathbf{b} \quad \alpha + \beta + \gamma = 0, \ \alpha\beta\gamma = -\frac{21}{5} \qquad \mathbf{c} \quad -\frac{4}{5}$$

10 a -30 **b**
$$\alpha + \beta + \gamma = 0$$
, $\alpha\beta\gamma = -\frac{21}{5}$

$$c -\frac{4}{5}$$

11
$$2w^3 + 9w^2 + 39w - 104 = 0$$

12 a
$$3w^4 - 2w^3 - 10w^2 + 28w + 64 = 0$$

b
$$2w^4 + 14w^3 + 21w^2 + 43w + 298 = 0$$